

MAICoS’ Documentation

[image: MAICoS logo]
This documentation covers everything you need to know about MAICoS, the Molecular
Analysis for Interfacial and Confined Systems toolkit. There are five sections:

	Getting started

	How-to guides

	Reference guides

	Explanations

	Developer documentation

If you are new to MAICoS, we recommend starting with the Getting started
section. If you want to contribute to the development of the library, please have a look
at our developer documentation.

Getting started

The Getting started section is for MAICoS beginners. It will help you install
and familiarize yourself with MAICoS and its approach to analyse molecular dynamics
simulations.

How-to guides

The How-to guides section is for MAICoS intermediate and advanced users. It
contains guides taking you through series of steps involved in addressing key problems
and use-cases in MAICoS.

Reference guides

The Reference guides section is for MAICoS intermediate and advanced users, it
contains technical references and parameter list for each MAICoS modules
(How-to guides) as well as the APIs. It describes the various functionalities
provided by MAICoS. You can always refer to this section to learn more about classes,
functions, modules, and other aspects of MAICoS machinery you may come across.

Explanations

The Explanations section discusses key topics and concepts at a fairly
high level and provides explanations to expand your knowledge of MAICoS. It requires at
least basic to intermediate knowledge of MAICoS.

Developer documentation

The Developer documentation helps you contributing to the code base or the documentation of
MAICoS.

Getting started

This sections describes MAICoS, how to install it, and its most basic commands.

	What is MAICoS

	Installation

	Usage - Python interpreter
	Load Simulation Data

	Density Profiles
	Uncertainity estimates

	Improving the Results

	Access to all the Module’s Options

	Additional Options

	Velocity Profile

	Usage - command line

	Some conventions

	Changelog
	v0.9 (XXXX/XX/XX)

	v0.8 (2024/02/05)

	v0.7.2 (2023/01/09)

	v0.7.1 (2023/01/01)

	v0.7 (2022/12/27)

	v0.6.1 (2022/09/26)

	v0.6 (2022/09/01)

	v0.5.1 (2022/02/21)

	v0.5 (2022/02/17)

	v0.4.1 (2021/12/17)

	v0.4 (2021/12/13)

	v0.3 (2020/03/03)

	v0.2 (2020/04/03)

	v0.1 (2019/10/30)

What is MAICoS

MAICoS is the acronym for Molecular Analysis for Interfacial and Confined Systems.
It is an object-oriented python toolkit for analysing the structure and dynamics of
interfacial and confined fluids from molecular simulations. Combined with MDAnalysis [https://www.mdanalysis.org],
MAICoS can be used to extract density profiles, dielectric constants, structure factors,
or transport properties from trajectories files, including LAMMPS, GROMACS, CHARMM or
NAMD data. MAICoS is open source and is released under the GNU general public license
v3.0.

MAICoS is a tool for beginners of molecular simulations with no prior Python experience.
For these users MAICoS provides a descriptive command line interface. Also experienced
users can use the Python API for their day to day analysis or use the provided
infrastructure to build their own analysis for interfacial and confined systems.

Keep up to date with MAICoS news by following us on Twitter [https://twitter.com/maicos_analysis]. If you find an issue, you
can report it on Gitlab [https://gitlab.com/maicos-devel/maicos]. You can also join the developer team on Discord [https://discord.gg/mnrEQWVAed] to discuss
possible improvements and usages of MAICoS.

Currently, MAICoS supports the following analysis modules in alphabetical order:

	Module Name

	Description

	DensityCylinder

	Compute cylindrical partial densitiy profiles

	DensityPlanar

	Compute cartesian partial density profiles

	DensitySphere

	Compute spherical partial density profiles

	DielectricCylinder

	Compute cylindrical dielectric profiles

	DielectricPlanar

	Compute planar dielectric profiles

	DielectricSpectrum

	Compute the linear dielectric spectrum

	DielectricSphere

	Compute spherical dielectric profiles

	DipoleAngle

	Compute angle timeseries of dipole moments

	DiporderCylinder

	Compute cylindrical dipolar order parameters

	DiporderPlanar

	Compute planar dipolar order parameters

	RDFDiporder

	Spherical Radial Distribution function between dipoles

	DiporderSphere

	Compute spherical dipolar order parameters

	DiporderStructureFactor

	Structure factor for dipoles

	KineticEnergy

	Compute the timeseries of energies

	PDFCylinder

	Compute cylindrical shell-wise 1D pair distribution functions

	PDFPlanar

	Compute slab-wise planar 2D pair distribution functions

	Saxs

	Compute small angle X-Ray structure factors and scattering intensities (SAXS)

	TemperaturePlanar

	Compute temperature profiles in a cartesian geometry

	VelocityCylinder

	Compute the cartesian velocity profile across a cylinder

	VelocityPlanar

	Compute the velocity profile in a cartesian geometry

Installation

Install MAICoS using pip [https://pip.pypa.io] with:

pip install maicos

or using conda [https://www.anaconda.com] with:

conda install -c conda-forge maicos

Note

Go to the end
to download the full example code

Usage - Python interpreter

To follow this tutorial, it is assumed that MAICoS has been installed on your computer.

MAICoS heavily depends on the MDAnalysis [https://www.mdanalysis.org] infrastructure for trajectory loading and
atom selection. Here we will only cover a small aspects of the capabilities of
MDAnalysis [https://www.mdanalysis.org]. If you want to learn more about the library, take a look at their
documentation [https://docs.mdanalysis.org/stable/index.html].

Only three MAICoS analysis modules are used in this tutorial
maicos.DensityPlanar, maicos.VelocityPlanar and
maicos.DiporderPlanar but all modules follow the same structure:

	load your simulation data into an MDAnalysis.core.universe.Universe [https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe]

	define analysis parameters like bin width or the direction of the analysis

	after the analysis was succesful, access all results in a
MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results] of the analysis object.

Note that some of the calculations may contain pitfall, such as dielectric profiles
calculation. Potential pitfalls and best practices are listed in the
How-to guides section.

To start, let us first import Matplotlib, MDAnalysis and MAICoS

import matplotlib.pyplot as plt
import MDAnalysis as mda

import maicos

Load Simulation Data

For this tutorial we use a system consisting of a 2D slab with 1176 water molecules
confined in a 2D slit made of NaCl atoms, where the two water/solid interfaces are
normal to the axis \(z\) as shown in the snapshot below:

[image: Snapshot Slit Flow System]
[image: Snapshot Slit Flow System]
An acceleration \(a = 0.05\,\text{nm}\,\text{ps}^{-2}\) was applied to the water
molecules in the \(\boldsymbol{e}_x\) direction parallel to the NaCl wall, and the
atoms of the wall were maintained frozen along \(\boldsymbol{e}_x\).

We first create an MDAnalysis.core.universe.Universe [https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe] by loading a topology
and trajectory from disk. You can download the topology
and the trajectory from our website.

u = mda.Universe("slit_flow.tpr", "slit_flow.trr")

Let us print a few information about the trajectory:

print(f"Number of frames in the trajectory is {u.trajectory.n_frames}.")
timestep = round(u.trajectory.dt, 2)
print(f"Time interval between two frames is {timestep} ps.")
total_time = round(u.trajectory.totaltime, 2)
print(f"Total simulation time is {total_time} ps.")

Number of frames in the trajectory is 201.
Time interval between two frames is 10.0 ps.
Total simulation time is 2000.0 ps.

Now, we define four atom groups containing repectively:

	the oxygen and the hydrogen atoms (of the water molecules),

	the oxygen atoms (of the water molecules),

	the hydrogen atoms (of the water molecules),

	the Na and Cl atoms (of the wall):

group_H2O = u.select_atoms("type OW HW")
group_O = u.select_atoms("type OW")
group_H = u.select_atoms("type HW")
group_NaCl = u.select_atoms("type SOD CLA")

Let us print a few information about the groups

print(f"Number of water molecules is {group_O.n_atoms}.")
print(f"Number of NaCl atoms is {group_NaCl.n_atoms}.")

Number of water molecules is 1176.
Number of NaCl atoms is 784.

Density Profiles

Let us use the maicos.DensityPlanar class to extract the density profile of
the group_H2O along the (default) \(z\) axis by running the analysis:

dplan = maicos.DensityPlanar(group_H2O).run()

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.

The warning starting with Unwrapping is perfectly normal and can be ignored for now.

Let us extract the bin coordinates \(z\) and the averaged density profile from the
results attribute:

zcoor = dplan.results.bin_pos
dens = dplan.results.profile

The density profile is given as a 1D array, let us look at the 10 first lines:

print(dens[:10])

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 2.91778317e-05 3.26228271e-01 9.99460378e-01
 5.32837117e-01 5.64829859e-01]

By default the bin_width is 1 Å, and the unit is atomic mass per \(Å^3\)
(\(\text{u}/\text{Å}^3\)).

Let us plot the density profile using Matplotlib:

fig, ax = plt.subplots()

ax.plot(zcoor, dens)

ax.set_xlabel(r"z coordinate ($\rm Å$)")
ax.set_ylabel(r"density H2O ($\rm u \cdot Å^{-3}$)")

fig.show()

[image: usage python]
Uncertainity estimates

MAICoS estimates the uncertainity for each profile. This uncertainity is stored inside
the dprofile attribute.

uncertainity = dplan.results.dprofile

Let us plot the results also showing the uncertainities

fig, ax = plt.subplots()

ax.errorbar(zcoor, dens, 5 * uncertainity)

ax.set_xlabel(r"z coordinate ($\rm Å$)")
ax.set_ylabel(r"density H2O ($\rm u \cdot Å^{-3}$)")

fig.show()

[image: usage python]For this example we scale the error by 5 to be visible in the plot.

The uncertainity estimatation assumes that the trajectory data is uncorraleted. If the
correlation time is too high or not reasonably computable a warning occurs that the
uncertainity estimatation might be unreasonable.

maicos.DensityPlanar(group_H2O).run(start=10, stop=13, step=1)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.
/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-packages/maicos/core/base.py:456: UserWarning: Your trajectory is too short to estimate a correlation time. Use the calculated error estimates with caution.
 self.corrtime = correlation_analysis(self.timeseries)

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad7bc26430>

Improving the Results

By changing the value of the default parameters, one can improve the results, and
perform more advanced operations.

Let us increase the spatial resolution by reducing the bin_width, and extract two
profiles instead of one:

	one for the oxygen atoms of the water molecules,

	one from the hydrogen atoms:

dplan_smaller_bin = []
for ag in [group_O, group_H]:
 dplan_smaller_bin.append(
 maicos.DensityPlanar(ag, bin_width=0.5, unwrap=False).run()
)

TODO: Intoduce AnalysisCollection here?

zcoor_smaller_bin_O = dplan_smaller_bin[0].results.bin_pos
dens_smaller_bin_O = dplan_smaller_bin[0].results.profile

zcoor_smaller_bin_H = dplan_smaller_bin[0].results.bin_pos
dens_smaller_bin_H = dplan_smaller_bin[0].results.profile

Let us plot the results using two differents \(y\)-axis:

fig, ax1 = plt.subplots()

ax1.plot(zcoor_smaller_bin_O, dens_smaller_bin_O, label=r"Oxygen")
ax1.plot(zcoor_smaller_bin_H, dens_smaller_bin_H * 8, label=r"Hydrogen")

ax1.set_xlabel(r"z coordinate ($Å$)")
ax1.set_ylabel(r"density O ($\rm u \cdot Å^{-3}$)")

ax2 = ax1.twinx()
ax2.set_ylabel(r"density H ($\rm u \cdot Å^{-3}$)")
ax1.legend()

fig.show()

[image: usage python]

Access to all the Module’s Options

For each MAICoS module, they are several parameters similar to bin_width. The
parameter list and default options are listed in the module’s documentation, and can be gathered by calling the help function of Python:

help(maicos.DensityPlanar)

Help on class DensityPlanar in module maicos.modules.densityplanar:

class DensityPlanar(maicos.core.planar.ProfilePlanarBase)
 | DensityPlanar(atomgroup: MDAnalysis.core.groups.AtomGroup, dens: str = 'mass', dim: int = 2, zmin: Optional[float] = None, zmax: Optional[float] = None, bin_width: float = 1, refgroup: Optional[MDAnalysis.core.groups.AtomGroup] = None, sym: bool = False, grouping: str = 'atoms', unwrap: bool = True, bin_method: str = 'com', output: str = 'density.dat', concfreq: int = 0, jitter: float = 0.0) -> None
 |
 | Cartesian partial density profiles.
 |
 | Calculations are carried out for
 | ``mass`` :math:`(\rm u \cdot Å^{-3})`, ``number`` :math:`(\rm Å^{-3})` or ``charge``
 | :math:`(\rm e \cdot Å^{-3})` density profiles along certain cartesian axes ``[x, y,
 | z]`` of the simulation cell. Cell dimensions are allowed to fluctuate in time.
 |
 | For grouping with respect to ``molecules``, ``residues`` etc., the corresponding
 | centers (i.e., center of mass), taking into account periodic boundary conditions,
 | are calculated. For these calculations molecules will be unwrapped/made whole.
 | Trajectories containing already whole molecules can be run with ``unwrap=False`` to
 | gain a speedup. For grouping with respect to atoms, the `unwrap` option is always
 | ignored.
 |
 | For the correlation analysis the central bin
 | (:math:`N \backslash 2`) of the 0th's group profile is used. For further information on the correlation analysis please
 | refer to :class:`maicos.core.base.AnalysisBase` or the :ref:`general-design`
 | section.
 |
Parameters
atomgroup : MDAnalysis.core.groups.AtomGroup
A :class:`~MDAnalysis.core.groups.AtomGroup` for which the calculations are
performed.
unwrap : bool
When :obj:`True`, molecules that are broken due to the periodic boundary
conditions are made whole.
If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag ``-no-unwrap`` when using MAICoS
from the command line, or use ``unwrap=False`` when using MAICoS from the Python
interpreter.
Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the ``trjconv`` command of GROMACS.
refgroup : MDAnalysis.core.groups.AtomGroup
Reference :class:`~MDAnalysis.core.groups.AtomGroup` used for the calculation.
If ``refgroup`` is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If ``refgroup`` is :obj:`None` the calculations are
performed with respect to the center of the (changing) box.
jitter : float
Magnitude of the random noise to add to the atomic positions.
A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If ``jitter = 0.0`` (default), the original atomic positions are kept
unchanged.
You can estimate the precision of the positions in your trajectory with
:func:`maicos.lib.util.trajectory_precision`. Note that if the precision is not
the same for all frames, the smallest precision should be used.
concfreq : int
When concfreq (for conclude frequency) is larger than ``0``, the conclude
function is called and the output files are written every ``concfreq``
frames.
dim : {0, 1, 2}
Dimension for binning (``x=0``, ``y=1``, ``z=1``).
zmin : float
Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.
If ``zmin=None``, all coordinates down to the lower cell boundary are taken into
account.
zmax : float
Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.
If ``zmax = None``, all coordinates up to the upper cell boundary are taken into
account.
bin_width : float
Width of the bins (in Å).
sym : bool
Symmetrize the profile. Only works in combination with
``refgroup``.
grouping : {``"atoms"``, ``"residues"``, ``"segments"``, ``"molecules"``, ``"fragments"``}
Atom grouping for the calculations.
The possible grouping options are the atom positions (in the case where
``grouping="atoms"``) or the center of mass of the specified grouping unit (in
the case where ``grouping="residues"``, ``"segments"``, ``"molecules"`` or
``"fragments"``).
bin_method : {``"com"``, ``"cog"``, ``"coc"``}
Method for the position binning.
The possible options are center of mass (``"com"``),
center of geometry (``"cog"``), and center of charge (``"coc"``).
output : str
Output filename.
dens : {``"mass"``, ``"number"``, ``"charge"``}
density type to be calculated.
Attributes

results.bin_pos : numpy.ndarray
Bin positions (in Å) ranging from ``zmin`` to ``zmax``.
results.profile : numpy.ndarray
Calculated profile.
results.dprofile : numpy.ndarray
Estimated profile's uncertainity.
Notes

Partial mass density profiles can be used to calculate the ideal component of the
chemical potential. For details, take a look at the corresponding :ref:`How-to
guide<howto-chemical-potential>`.
Method resolution order:
DensityPlanar
maicos.core.planar.ProfilePlanarBase
maicos.core.planar.PlanarBase
maicos.core.base.AnalysisBase
maicos.core.base._Runner
MDAnalysis.analysis.base.AnalysisBase
maicos.core.base.ProfileBase
builtins.object
Methods defined here:
__init__(self, atomgroup: MDAnalysis.core.groups.AtomGroup, dens: str = 'mass', dim: int = 2, zmin: Optional[float] = None, zmax: Optional[float] = None, bin_width: float = 1, refgroup: Optional[MDAnalysis.core.groups.AtomGroup] = None, sym: bool = False, grouping: str = 'atoms', unwrap: bool = True, bin_method: str = 'com', output: str = 'density.dat', concfreq: int = 0, jitter: float = 0.0) -> None
Initialize self. See help(type(self)) for accurate signature.
--
Readonly properties inherited from maicos.core.planar.PlanarBase:
odims
Other dimensions perpendicular to dim i.e. (0,2) if dim = 1.
--
Methods inherited from maicos.core.base.AnalysisBase:
run(self, start: Optional[int] = None, stop: Optional[int] = None, step: Optional[int] = None, frames: Optional[int] = None, verbose: Optional[bool] = None, progressbar_kwargs: Optional[dict] = None) -> typing_extensions.Self
Iterate over the trajectory.
savetxt(self, fname: str, X: numpy.ndarray, columns: Optional[List[str]] = None) -> None
Save to text.
An extension of the numpy savetxt function. Adds the command line input to the
header and checks for a doubled defined filesuffix.
Return a header for the text file to save the data to. This method builds a
generic header that can be used by any MAICoS module. It is called by the save
method of each module.
The information it collects is:
- timestamp of the analysis
- name of the module
- version of MAICoS that was used
- command line arguments that were used to run the module
- module call including the default arguments
- number of frames that were analyzed
- atomgroup that was analyzed
- output messages from modules and base classes (if they exist)
--
Readonly properties inherited from maicos.core.base.AnalysisBase:
box_center
Center of the simulation cell.
--
Data descriptors inherited from maicos.core.base._Runner:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)
--
Methods inherited from maicos.core.base.ProfileBase:
save(self) -> None
Save results of analysis to file specified by ``output``.

Here we can see that for maicos.DensityPlanar, there are several possible
options such as zmin, zmax (the minimal and maximal coordinates to consider),
or refgroup (to perform the binning with respect to the center of mass of a
certain group of atoms).

Knowing this, let us re-calculate the density profile of \(\mathrm{H_2O}\), but
this time using the group group_H2O as a reference for the center of mass:

dplan_centered_H2O = maicos.DensityPlanar(
 group_H2O, bin_width=0.5, refgroup=group_H2O, unwrap=False
)
dplan_centered_H2O.run()
zcoor_centered_H2O = dplan_centered_H2O.results.bin_pos
dens_centered_H2O = dplan_centered_H2O.results.profile

Let us also extract the density profile for the NaCl walls, but centered with respect
to the center of mass of the \(\mathrm{H_2O}\) group:

dplan_centered_NaCl = maicos.DensityPlanar(
 group_NaCl, bin_width=0.5, refgroup=group_H2O, unwrap=False
)
dplan_centered_NaCl.run()
zcoor_centered_NaCl = dplan_centered_NaCl.results.bin_pos
dens_centered_NaCl = dplan_centered_NaCl.results.profile

/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-packages/maicos/lib/math.py:303: RuntimeWarning: invalid value encountered in divide
 (1 - np.arange(1, cutoff) / len(timeseries)) * corr[1:cutoff] / corr[0]
/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-packages/maicos/core/base.py:456: UserWarning: Your trajectory does not provide sufficient statistics to estimate a correlation time. Use the calculated error estimates with caution.
 self.corrtime = correlation_analysis(self.timeseries)

An plot the two profiles with different \(y\)-axis:

fig, ax1 = plt.subplots()

ax1.plot(zcoor_centered_H2O, dens_centered_H2O, label=r"$\rm H_2O$")
ax1.plot(zcoor_centered_NaCl, dens_centered_NaCl / 5, label=r"$\rm NaCl$")

ax1.set_xlabel(r"z coordinate ($Å$)")
ax1.set_ylabel(r"density O ($\rm u \cdot Å^{-3}$)")
ax1.legend()

ax2 = ax1.twinx()
ax2.set_ylabel(r"density NaCl ($\rm u \cdot Å^{-3}$)")

fig.show()

[image: usage python]

Additional Options

Use verbose=True to display a progress bar:

dplan_verbose = maicos.DensityPlanar(group_H2O)
dplan_verbose.run(verbose=True)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.

 0%| | 0/201 [00:00<?, ?it/s]
 18%|█▊ | 37/201 [00:00<00:00, 360.88it/s]
 37%|███▋ | 74/201 [00:00<00:00, 360.00it/s]
 55%|█████▌ | 111/201 [00:00<00:00, 362.00it/s]
 74%|███████▎ | 148/201 [00:00<00:00, 362.96it/s]
 92%|█████████▏| 185/201 [00:00<00:00, 362.81it/s]
100%|██████████| 201/201 [00:00<00:00, 361.47it/s]

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad78e1cbe0>

To analyse only a subpart of a trajectory file, for instance to analyse only frames 2,
4, 6, 8, and 10, use the start, stop, and step keywords as follow:

dplan = maicos.DensityPlanar(group_H2O).run(start=10, stop=20, step=2)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.

Velocity Profile

Here we use the same trajectory file, but extract the velocity profile instead of the
density profile. Do to so, the maicos.VelocityPlanar is used.

Let us call the velocity module:

tplan = maicos.VelocityPlanar(group_H2O, bin_width=0.5, vdim=0, flux=False).run()

zcoor = tplan.results.bin_pos
vel = tplan.results.profile

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.

0`` option, but the binning is made along the default \(z\) axis.

And plot the velocity profile:

fig, ax = plt.subplots()

ax.axhline(0, linestyle="dotted", color="gray")
ax.plot(zcoor, vel)

ax.set_xlabel(r"z coordinate ($Å$)")
ax.set_ylabel(r"velocity H2O ($Å ps^{-1}$)")

fig.show()

[image: usage python]

Finally, still using the same trajectory file, we extract the average orientation of
the water molecules.

Let us call the maicos.DiporderPlanar to extract the average orientation of
the water molecules:

mydiporder = maicos.DiporderPlanar(
 group_H2O, refgroup=group_H2O, order_parameter="cos_theta"
).run()

Then, let us extract the cosinus of the angle of the molecules, \(\cos(\theta)\):

zcoor = mydiporder.results.bin_pos
cos_theta = mydiporder.results.profile

fig, ax = plt.subplots()

ax.axhline(0, linestyle="dotted", color="gray")
ax.plot(zcoor, cos_theta)

ax.set_xlabel(r"z coordinate ($Å$)")
ax.set_ylabel(r"\cos(θ)")

plt.show()

[image: usage python]

Download Jupyter notebook: usage-python.ipynb

Download Python source code: usage-python.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Usage - command line

MAICoS can be used directly from the command line (cli). Using cli instead of a Jupyter
notebook can sometimes be more comfortable, particularly for lengthy analysis. The cli
in particular is handy because it allows for updating the analysis results during the
run. You can specify the number of frames after the output is updated with the
-concfreq flag. See below for details.

Note that in this documentation, we almost exclusively describe the use of MAICoS from
the python interpreter, but all operations can be equivalently performed from the cli.

#!/bin/bash
-*- Mode: bash; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
#
Copyright (c) 2024 Authors and contributors
(see the AUTHORS.rst file for the full list of names)
#
Released under the GNU Public Licence, v3 or any higher version
SPDX-License-Identifier: GPL-3.0-or-later

maicos densityplanar -s slit_flow.tpr \
 -f slit_flow.trr \
 -atomgroup 'type OW HW'

The density profile has been written in a file named ``density.dat`` in the current
directory. The written file starts with the following lines

head -n 20 density.dat

For lengthy analysis, use the ``concfreq`` option to update the result during the run

maicos densityplanar -s slit_flow.tpr \
 -f slit_flow.trr \
 -atomgroup 'type OW HW' \
 -concfreq '10'

The general help of MAICoS can be accessed using

maicos -h

Package-specific page can also be accessed from the cli

maicos densityplanar -h

Some conventions

The base units of MAICoS are consistent with those of MDAnalysis [https://docs.mdanalysis.org/stable/documentation_pages/units.html]. Keeping inputs and
outputs consistent with this set of units reduces ambiguity, so we encourage everyone to
use them exclusively.

The base units are:

Base units in MDAnalysis

	quantity

	unit

	SI units

	length

	Å

	\(10^{-10}\) m

	mass

	u

	\(1.660538921 \times 10^{-27}\) kg

	time

	ps

	\(10^{-12}\) s

	energy

	kJ/mol

	\(1.66053892103219 \times 10^{-21}\) J

	charge

	\(e\)

	\(1.602176565 \times 10^{-19}\) As

	force

	kJ/(mol·Å)

	\(1.66053892103219 \times 10^{-11}\) J/m

	speed

	Å/ps

	\(100\) m/s

Changelog

v0.9 (XXXX/XX/XX)

Philip Loche, Marc Sauter, Kira Fischer, Federico Grasselli, Henrtik Stooß

	Remove handling of multiple atomgroups in favor of AnalysisCollection (!301)

	Fix openMP detection during setup (!304)

	maicos.Saxs additionally provides structure factor. (!303)

	Remove default arguments from core classes (!302)

	Add an AnalaysisCollection class to perform multiple analyses on the same
trajectory (!298)

	Remove custom module command line interface (!299)

	Add example for maicos.core.AnalysisBase and rework own module section in
developer docs (!299)

	Allow running an analysis with a universe without a cell (!297)

	Test that core.AnalysisBase API and run method is the same as
MDAnalysis.analysis.base.AnalysisBase [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase] (!297)

	Add frames and progressbar_kwargs argument to
maicos.core.AnalysisBase.run() (!297)

	Update copyright year (!296)

	Add new diporder modules: RDFDiporder, DiporderStructureFactor (!296)

	Add correlation time estimate for SAXS module (!296)

	Added tests of the analytical error propagation (!292)

	Remove symbolic links from examples (!295)

v0.8 (2024/02/05)

Simon Gravelle, Philip Loche, Marc Sauter, Henrik Stooß, Philipp Staerk, Adyant Agrawal,
Kira Fischer

	Skip test for custom modules in case the import is not working (!294)

	Change to CHANGELOG.rst update check so that it is only executed in MRs (!198)

	Rename radial distribution function to pair distribution function (!278)

	Add RDF derivation and explain role of dz. (!278)

	Implement 1D pair distribution function in RDFCylinder (!276)

	Sort format and add more atomtypes to atomtypes.dat (!291)

	Add grouping option to DipoleAngle module (!290)

	Added Support for Python 3.12 (!289)

	Remove suffixes -linux, -macos, -windows when building wheels. Platform
will be detected automatically. (!288)

	Use default tox error for non-exsiting enviroment (!285)

	Parse documentation metadata from pyproject.toml (!287)

	Convert pathlib.Path into str when using in sys.path.append (#123, !286)

	Update dev names (!284)

	Improvements to documentation rendering (#122, !282)

	Unify Python versions in tox environments i.e. py311-build-macos to
build-macos (!283)

	Remove deprecated pytest tmpdir fixture (!283)

	Remove deprecated assert_almost_equal in favor of assert_allclose (!283)

	Move from os.path to pathlib.Path (!283)

	Added Support for Python 3.11 (!283)

	Update MacOS images for CI (!281)

	Removed the obsolete option for the vacuum boundary condition in the
DielectricPlanar module and prompt users to use tin-foil boundary
conditions instead (!280).

	Add physical integration test to test that structure factor from Saxs is the same as
the Fourier transformed RDF. (!279)

	Add example and explenation of how to relate the radial distribution function and the
structure factor (!279)

	Add function maicos.lib.math.rdf_structure_factor() for converting a radial
distribution function into a structure factor. (!279)

	Change default biwnwidth (dq) in maicos.Saxs to 0.1. (!279)

	Move cutils to cmath (!279)

	Add weight argument to maicos.lib._cmath.compute_structure_factor()

	Code cleanup of maicos.Saxs (!279)

	Fixed markup and consistency in correlation function docs (!277)

	Add info for DielectricPlanar module for ignored combination of vac=True and
is_3d=False. (!275)

	Add description for tox jobs (!275)

	Cleanup coverage config and move to pyproject.toml (!275)

	Changed the way number normalization works, introduced sums dict (!274)

	Fixed typing error in RDF modules (!273)

	Update docs to reflect changes in mdacli (!271)

	Add banner to MAICoS output reporting the version (!272)

	Update UML graphic (!269)

	Show warnings if set boundaries would result in wrong results (!261)

	Small corrections to the documentation and type hinting (!268)

	Add module for calculating radial distribution functions in cylinders (!242)

	Add modules for calculating cylindrical and spherical dipolar order parameters (!259)

	Fix reproducibility information in output (!263)

	Make savetxt work with Pathlib objects (!267)

	Update versionner to 0.29 (!266)

	Use dipole_vector methods from MDAnalysis (!265)

	Bump minimum Python version to 3.9 (!264)

	Fix dipole calculation in DielectricCylinder (!258)

	Add example for RDFPlanar (!256)

	Move geometry transformations to lib.math (!257)

	Add typehints for examples (!255)

	Add typehints for modules (!253)

	Only test minimum and maximum Python version in CI (!252)

	Add typehints for core classes (!251)

	Update documentation with parameters, returns and examples for library functions
(!248)

	Update CI to use latest MacOS (!250)

	Add tables to documentation pages (!249)

	Fix links to own classes in examples (!247)

	Update install instructions for users and devs (!246)

	Show authors on website (!245)

	Add link to developer documentation in CONTRIBUTING.rst (!244)

	Remove Python 2.x leftover of specific super() call (!243)

	Use Gitlab for showing coverage and unit test reports (!241)

	Use black formatter and 88 chars/line for the code and rst files (!240)

	Add return values for correlation analysis to all base classes (!235)

	Added more linting for rst files (!239)

	Bump minimum version of tqdm to 4.60 (!238)

	Add prompt toggle to examples (!236)

	Added description to the ideal chemical potential how-to (!232)

	Added quotation marks to command in tox.ini to account for spaces in paths (!232)

	Fixed some typos and made minor modifications to the documentation (!232)

	Cleanup .gitignore (!233)

	More consistent molecule wrapping (!230)

	Added missing AnalysisBase parameters to modules (!231)

	created dark and light images and logo (!229)

	Add explicit stacklevel arguments to warnings in the library (!236)

	Switch to the build module (!234)

v0.7.2 (2023/01/09)

Philip Loche, Henrik Stooß

	Remove superfluous group wise wrapping (!225)

	Clarify unclear definition in Dieletric modules that could lead to wrong results
(!228)

	Fixed windows string manipulation in test CI (!227)

	Added coverage posting on GitLab (!226)

	Corrected wrong comparison in correlation analysis and added tests

	Fixed link to changelog in pyproject.toml

	Migrated versioneer to pyproject.toml

	Added Support for Python 3.11

v0.7.1 (2023/01/01)

Henrik Stooß

	Fix upload to PyPi. This release is identical to v0.7.

v0.7 (2022/12/27)

Philip Loche, Simon Gravelle, Marc Sauter, Henrik Stooß, Kira Fischer, Alexander
Schlaich, Philipp Staerk

	Make sure citation are only printed once (!260)

	Added MacOS pipeline, fixed wheels (!218)

	Fix CHANGELOG testing (!220)

	Added dielectric how-to (!208)

	Raise an error if unwrap=False and refgroup != None in dielectric modules
(!215).

	Fix velocity profiles (!211)

	Added the Theory to the Dielectric docs (!201)

	Add a logger info for citations (!205)

	Rename Diporder to DiporderPlanar (!202)

	Change default behavior of DielectricPlanar: assume slab geometry by default (removing
the xy flag and instead introduce is_3d for 3d-periodic systems) (!202)

	Rename profile_mean to profile (!202)

	Major improvements on the documentation (!202)

	Add a check if the CHANGELOG.rst has been updated (!198)

	Fix behaviour of refgroup (!192)

	Resolve +1 is summed for epsilon for each atom group (#101, !193)

	Flatten file structure of analysis modules (#46, !196)

	Consistent mass unit in docs

	Porting examples to sphinx-gallery (!190)

	Add jitter parameter to AnalysisBase (!183)

	Test output messages (!191)

	Fixed typo in DielectricPlanar docs (!194)

	Add Sphere modules (!175)

	Add ProfileBase class (!180)

	Slight restructure of the documenation (!189)

	Fix py311 windows

	Update build requirements for py310 and py311

	Merged setup.cfg into pyproject.toml (!187)

	Use versioneer for version info (!150)

	Update project urls (!185)

	Added repository link in the documentation (!184)

	Added windows CI/CD pipeline (!182)

	Update package discovery methods in setup.cfg

	Refactor CI script (!181)

	Fix DielectricCylinder (!165)

	Unified n_bins logging (#93, !179)

	Add MAICoS UML Class Diagramm (!178)

	Changed density calculation using range in np.histogram (!77)

	Update branching model in the documentation (!177)

	remove ./ from index.rst

	Improve documentation (!174)

	Added reference for SAXS calculations (!176)

	Update type of bin_pos in docs

	Added VelocityCylinder module

	Change behavior of sort_atomgroup (#88, !152)

	get_compound: option for returning indices of topology attributes

	Added Tutorial for non-spatial analysis module (!170)

	Check atomgroups if they contain any atoms (!172)

	New core attributes: bin_edges, bin_area, bin_volume, bin_pos &
bin_width (!167)

	Use frame dict in structure.py (!169)

	Fix box dimensions for cylindrical boundaries (!168)

	rmax for cylindrical systems now uses correct dimensions

	Transport module documentation update (!164)

	Rename frame dict (!166)

	Implement SphereBase and ProfileSphereBase (!162)

	Relative path for data (!163)

	Create Linux wheels (!160)

	Fix Diporder tests (!161)

	norm=number: Declare bins with no atoms as nan (!157)

	Simplify weight functions (!158)

v0.6.1 (2022/09/26)

Henrik Stooß

	Fix the output of the ChemicalPotentialPlanar module (!173)

v0.6 (2022/09/01)

Philip Loche, Simon Gravelle, Srihas Velpuri, Henrik Stooß, Alexander Schlaich,
Maximilian Becker, Kira Fischer

	Write total epsilon as defined in paper (!155)

	Introduce generic header (!149)

	Fix error estimate in EpsilonPlanar (!153)

	Fix sym option in EpsilonPlanar (!148)

	Use standard error of the mean instead of variance for error estimate (!147)

	Make all tests that write file use temporary file directory (!151)

	Rewrite Velocity module using ProfilePlanarBase (!142)

	Add RDFPlanar (!133)

	Refactor EpsilonPlanar (!139)

	Add a correlation time estimator (!137)

	Add frame dict to AnalysisBase (!138)

	Generalize comgroup attribute to all dimensions (!132)

	Output headers do not require residue names anymore (!134)

	Remove Debyer class (!130)

	Generalize concfreq attribute in AnalysisBase (!122)

	Fix broken binning in EpsilonPlanar (!125)

	Removed repairMolecules (!119)

	Added grouping and bin_method option (!117)

	Bump minimum MDAnalysis version to 2.2.0 (!117)

	Bump minimum Python version to 3.8 (!117)

	Use base units exclusively (!115)

	Higher tolerance for non-neutral systems (1E-4 instead of 1E-5)

	charge``neutral decorator uses ``check_compound now

	Add option to symmetrize profiles using ProfilePlanarBase (!116)

	Fix comgroup parameter working only in the z direction (!116)

	Remove center option from ProfileBase (!116)

	Introduces new ProfilePlanarBase (!111)

	Split new DensityPlanar into ChemicalPotentialPlanar, DensityPlanar,
TemperaturePlanar (!111)

	Convert more print statements into logger calls (!111)

	Fix wrong Diporder normalization + tests (!111)

	Add zmin and zmax to DensityPlanar and Diporder (!109)

	Fix EpsilonPlanar (!108)

	More tests for DensityPlanar, DensityCylinder, KineticEnergy and
DipoleAngle (!104)

	Remove EpsilonBulk (!107)

	Add Code of Conduct (!97)

	Fix lint errors (!95)

v0.5.1 (2022/02/21)

Henrik Stooß

	Fix pypi installation (!98)

v0.5 (2022/02/17)

Philip Loche, Srihas Velpuri, Simon Gravelle

	Convert Tutorials into notebooks (!93)

	New docs design (!93)

	Build gitlab docs only on master branch (!94, #62)

	Removed oxygen binning from diporder (!85)

	Improved CI including tests for building and linting

	Create a consistent value of zmax in every frame (!79)

	Corrected README for pypi (!83)

	Use Results class for attributes and improved docs (!81)

	Bump minimum Python version to 3.7 (!80)

	Remove spaghetti code in __main__.py and introduce mdacli as cli server
library. (!80)

	Remove SingleGroupAnalysisBase and MultiGroupAnalysisBase classes in favour of
a unified AnalysisBase class (!80)

	Change planar_base decorator to a PlanarBase class (!80)

	Rename modules to be consistent with PEP8 (density_planar -> DensityPlanar)
(!80)

	Use Numpy’s docstyle for doc formatting (!80)

	Use Python’s powerful logger library instead of bare print (!80)

	Use Python 3.6 string formatting (!80)

	Remove _calculate_results methods. This method is covered by the _conclude
method. (!80)

	Make results saving a public function (save) (!80)

	Added docstring Decorator for PlanarDocstring and verbose option (!80)

	Use MDAnalysis’s’ center_of_mass function for center of mass shifting (!80)

v0.4.1 (2021/12/17)

Philip Loche

	Fixed double counting of the box length in diporder (#58, !76)

v0.4 (2021/12/13)

Philip Loche, Simon Gravelle, Philipp Staerk, Henrik Stooß, Srihas Velpuri, Maximilian
Becker

	Restructure docs and build docs for develop and release version

	Include README files into sphinx doc

	Add tutorial for density_cylinder module

	Add planar_base decorator unifying the syntax for planar analysis modules as
denisty_planar, epsilon_planar and diporder (!48)

	Corrected time_series module and created a test for it

	Added support for Python 3.9

	Created sphinx documentation

	Raise error if end is to small (#40)

	Add sorting of atom groups into molecules, enabling import of LAMMPS data

	Corrected plot format selection in dielectric_spectrum (!66)

	Fixed box dimension not set properly (!64)

	Add docs for timeseries modulees (!72)

	Fixed diporder does not compute the right quantities (#55, !75)

	Added support of calculating the chemical potentials for multiple atomgroups.

	Changed the codes behaviour of calculating the chemical potential if atomgroups
contain multiple residues.

v0.3 (2020/03/03)

Philip Loche, Amanuel Wolde-Kidan

	Fixed errors occurring from changes in MDAnalysis

	Increased minimal requirements

	Use new ProgressBar from MDAnalysis

	Increased total_charge to account for numerical inaccuracy

v0.2 (2020/04/03)

Philip Loche

	Added custom module

	Less noisy DeprecationWarning

	Fixed wrong center of mass velocity in velocity module

	Fixed documentation in diporder for P0

	Fixed debug if error in parsing

	Added checks for charge neutrality in dielectric analysis

	Added test files for an air-water trajectory and the diporder module

	Performance tweaks and tests for sfactor

	Check for molecular information in modules

v0.1 (2019/10/30)

Philip Loche

	first release out of the lab

How-to guides

Like a cooking recipe, How-to guides help you solve key problems and use cases. If you
are a total MAICoS beginner, you should start with the Getting started
section.

	Small-angle X-ray scattering

	Ideal component of the chemical potential

	Dielectric profile calculation

	Pair distribution functions

	Calculating and interpreting dipolar pair correlation functions

Note

Go to the end
to download the full example code

Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) can be extracted using MAICoS. To follow this how-to
guide, you should download the topology and the
trajectory files of the water system.

For more details on the theory see Small-angle X-ray scattering.

First, we import Matplotlib, MDAnalysis, NumPy and MAICoS:

import matplotlib.pyplot as plt
import MDAnalysis as mda
from MDAnalysis.analysis.rdf import InterRDF

import maicos
from maicos.lib.math import compute_form_factor, compute_rdf_structure_factor

The water system consists of 510 water molecules in the liquid state. The
molecules are placed in a periodic cubic cell with an extent of \(25 \times 25
\times 25\,\textrm{Å}^3\).

Load Simulation Data

Create a MDAnalysis.core.universe.Universe [https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe] and define a group containing only
the oxygen atoms and a group containing only the hydrogen atoms:

u = mda.Universe("water.tpr", "water.trr")

group_O = u.select_atoms("type O*")
group_H = u.select_atoms("type H*")

Extract small angle x-ray scattering (SAXS) intensities

Let us use the maicos.Saxs class of MAICoS and apply it to all atoms in the
system:

saxs = maicos.Saxs(u.atoms).run(stop=30)

Note

SAXS computations are extensive calculations. Here, to get an overview of the
scattering intensities, we reduce the number of frames to be analyzed from 101
to 30, by adding the stop = 30 parameter to the run method. Due to the
small number of analyzed frames, the scattering intensities shown in this tutorial
should not be used to draw any conclusions from the data.

Extract the scattering vectors and the averaged structure factor and SAXS scattering
intensities from the results attribute:

scattering_values = saxs.results.scattering_vectors
structure_factors = saxs.results.structure_factors
scattering_intensities = saxs.results.scattering_intensities

The scattering intensities (and structure factors) are given as a 1D array, let us
look at the 10 first lines:

print(scattering_intensities[:10])

[1.62620077 0.91205581 1.32501428 1.75529088 1.20605233 2.13058505
 2.14645164 2.39313797 2.74842731 3.34680856]

By default, the binwidth in the recipocal \((q)\) space is \(0.1 Å^{-1}\).

We now plot the structure factor as well a the scattering intensities together.

fig1, ax1 = plt.subplots(nrows=2, sharex=True, layout="constrained")

ax1[0].plot(scattering_values, structure_factors)
ax1[1].plot(scattering_values, scattering_intensities)

ax1[-1].set_xlabel(r"q (1/Å)")

ax1[0].set_ylabel(r"structure factor $S(q)$")
ax1[1].set_ylabel(r"scattering intensities $I(q)$")
fig1.align_labels()

fig1.show()

[image: saxs]The structure factor \(S(q)\) and the scattering intensities \(I(q)\) are
related via

\[I(q) = [f(q)]^2 S(q)\]

where \(f(q)\) are the atomic form factors. We will investigate the relation below
in more details.

Computing oxygen and hydrogen contributions

An advantage of full atomistic simulations is their ability to investigate atomic
contributions individually. Let us calculate both oxygen and hydrogen contributions,
respectively:

saxs_O = maicos.Saxs(group_O).run(stop=30)
saxs_H = maicos.Saxs(group_H).run(stop=30)

Let us plot the results for the structure factor, the squared form factor as well
scattering intensities together. For computing the form factor we will use
maicos.lib.math.compute_form_factor(). Note that here we access the results
directly from the results attribute without storing them in individual variables
before:

fig2, ax2 = plt.subplots(nrows=3, sharex=True, layout="constrained")

structure factors
ax2[0].plot(
 saxs_O.results.scattering_vectors,
 saxs_O.results.structure_factors,
 label="Oxygen",
)
ax2[0].plot(
 saxs_H.results.scattering_vectors,
 saxs_H.results.structure_factors,
 label="Hydrogen",
)

form factors
ax2[1].plot(
 saxs_O.results.scattering_vectors,
 compute_form_factor(saxs_O.results.scattering_vectors, "O") ** 2,
)
ax2[1].plot(
 saxs_H.results.scattering_vectors,
 compute_form_factor(saxs_H.results.scattering_vectors, "H") ** 2,
)

scattering intensitie
ax2[2].plot(saxs_O.results.scattering_vectors, saxs_O.results.scattering_intensities)
ax2[2].plot(saxs_H.results.scattering_vectors, saxs_H.results.scattering_intensities)

ax2[-1].set_xlabel(r"q (1/Å)")
ax2[0].set_ylabel(r"$S(q)$")
ax2[1].set_ylabel(r"$f(q)^2$")
ax2[2].set_ylabel(r"$I(q)$")

ax2[0].legend()
fig2.align_labels()

fig2.show()

[image: saxs]The figure above nicely shows that multiplying the structure factor \(S(q)\) and
the squared form factor \(f(q)^2\) results in the scattering intensity
\(I(q)\). Also, it is worth to notice that due to small form factor of hydrogen
there is basically no contribution of the hydrogen atoms to the total scattering
intensity of water.

Connection of the structure factor to the radial distribution function

As in details explained in Small-angle X-ray scattering, the structure factor can be
related to the radial distribution function (RDF). We denote this structure factor by
\(S^\mathrm{FT}(q)\) since it is based on Fourier transforming the RDF. The
structure factor which can be directly obtained from the trajectory is denoted by
\(S^\mathrm{D}(q)\).

To relate these two we first calculate the oxygen-oxygen RDF up to half the box length
using MDAnalysis.analysis.rdf.InterRDF [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF] and save the result in
variables for an easier access.

box_lengh = u.dimensions[0]

oo_inter_rdf = InterRDF(
 g1=group_O, g2=group_O, range=(0, box_lengh / 2), exclude_same="residue"
).run()

r_oo = oo_inter_rdf.results.bins
rdf_oo = oo_inter_rdf.results.rdf

We use exclude_same="residue" to exclude atomic self contributions resulting in a
large peak at 0. Next, we convert the RDF into a structure factor using
maicos.lib.math.compute_rdf_structure_factor() and the number density of the
oxygens.

density = group_O.n_atoms / u.trajectory.ts.volume

q_rdf, struct_factor_rdf = compute_rdf_structure_factor(
 rdf=rdf_oo, r=r_oo, density=density
)

Now we can plot everything together and find that the direct evaluation from above and
the transformed RDF give the same structure factor.

fig3, ax3 = plt.subplots(2, layout="constrained")

ax3[0].axhline(1, c="gray", ls="dashed")
ax3[0].plot(r_oo, rdf_oo, label="Oxygen-Oxygen")
ax3[0].set_xlabel("r (Å)")
ax3[0].set_ylabel("radial distribution function")
ax3[0].set_xlim(0, 10)

ax3[1].plot(q_rdf, struct_factor_rdf, label=r"S^FT")
ax3[1].plot(
 saxs_O.results.scattering_vectors,
 saxs_O.results.structure_factors,
 label=r"S^D",
 ls="dashed",
)

ax3[1].set_xlabel("q (1/Å)")
ax3[1].set_ylabel("structure factor $S(q)$")
ax3[1].set_xlim(0, 7)

ax3[1].legend()
ax3[0].legend()
fig3.align_labels()

fig3.show()

[image: saxs]

Download Jupyter notebook: saxs.ipynb

Download Python source code: saxs.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Go to the end
to download the full example code

Ideal component of the chemical potential

What is the chemical potential?

Molecular dynamics simulations are often performed with a constant number of particles.
When modelling confined systems in molecular dynamics simulations, it is often assumed
that the confined geometry extends infinitely, while real systems have a finite size and
are connected to a reservior many times larger than the confined space.

In this case, the number of particles in the system is not constant, but changes over
time. This can be seen as a system that is exchanging particles with a reservoir. The
chemical potential describes how the free energy changes when particles are added to (or
removed from) the system. The chemical potential is therefore a very important quantity
in molecular dynamics simulations of confined systems.

If you want to know more about what the chemical potential means you can take a look at
the references below [1].

How to calculate the ideal component of the chemical potential

The chemical potential can be split up into different parts

\[\mu = \mu^0 + \mu^\text{ideal} + \mu^\text{excess},\]

where \(\mu^0\) represents the standard potential of the substance,
\(\mu^\text{ideal}\) represents the component of the potential that would also occur
for an ideal gas and \(\mu^\text{excess}\) represents the excess contribution
generated from the interactions between the particles. In the following calculations we
are only interested in the ideal component.

For our case, we can calculate the ideal component of the potential according to

\[\mu^\text{ideal} = R T \ln \left(\rho \Lambda^3 \right),\]

where \(\Lambda = \hbar \sqrt{\frac{2\pi}{m \cdot k_\mathrm{B} \cdot T}}\) is the
thermal De-Broglie wavelength, i.e. the mean De-Broglie wavelength at temperature
\(T\). Furthermore, \(m\) is the mass of the particles and \(\rho\) is the
mean density of the system. The mean density can be calculated with MAICoS by using the
Density modules. We will exemplify this in the following example using the
maicos.DensityPlanar module.

First we’ll import every module we need.

import MDAnalysis as mda
import numpy as np
from scipy import constants as const

import maicos

Now we define a function that calculates \(\mu\) according to the equation above.
We can calculate the Volume \(V\) with MAICoS by calculating the mean density and
deviding it by the mass of the particles. Therefore our function takes the density as
input instead of the Volume.

def mu(rho: np.ndarray, T: float, m: float) -> np.ndarray:
 """Calculate the chemical potential.

 The chemical potential is calculated from the density: mu = R T log(rho. / m)
 """
 # RT in KJ/mol
 RT = T * const.Boltzmann * const.Avogadro / const.kilo

 # De Broglie (converted to angstrom)
 db = (
 np.sqrt(const.h**2 / (2 * np.pi * m * const.atomic_mass * const.Boltzmann * T))
 / const.angstrom
)

 if np.all(rho > 0):
 return RT * np.log(rho * db**3)
 elif np.any(rho == 0):
 return np.float64("-inf") * np.ones(rho.shape)
 else:
 return np.float64("nan") * np.ones(rho.shape)

If you’re also interested in the error of the chemical potential we can calculate it
through propagation of uncertainty from the error of the density, calculated by
MAICoS. The error propagates according to

\[\begin{split}\Delta \mu &= \left| \frac{\partial \mu}{\partial \rho} \right| \cdot
 \Delta \rho \\
 &= \frac{RT}{\rho} \cdot \Delta \rho.\end{split}\]

The implemented function looks like this.

def dmu(rho: np.ndarray, drho: np.ndarray, T: float) -> np.ndarray:
 """Calculate the error of the chemical potential.

 The error is calculated from the density using propagation of uncertainty.
 """
 RT = T * const.Boltzmann * const.Avogadro / const.kilo

 if np.all(rho > 0):
 return RT * (drho / rho)
 else:
 return np.float64("nan") * np.ones(rho.shape)

Finally, we can use those previously defined functions to calculate the chemical
potential and its error for an example trajectory called water, whose data can be
downloaded from topology and trajectory. To calculate the mean density we use the module
maicos.DensityPlanar of MAICoS. This example uses a temperature of \(300
\: \rm K\) and a mass of \(18 \: \rm u\).

water = mda.Universe("water.tpr", "water.trr")
ana = maicos.DensityPlanar(water.atoms)
ana.run()
print("µ_id =", mu(ana.results.profile.mean(), 300, 18))
print("Δµ_id =", dmu(ana.results.profile.mean(), ana.results.dprofile.mean(), 300))

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.
/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-packages/maicos/core/base.py:456: UserWarning: Your data seems to be correlated with a correlation time which is 2.19 times larger than your step size. Consider increasing your step size by a factor of 4 to get a reasonable error estimate.
 self.corrtime = correlation_analysis(self.timeseries)
µ_id = -12.050277646766348
Δµ_id = 0.041243491788978626

References

[1]
G. Cook and R.H. Dickerson. Understanding the chemical potential. American Journal of Physics, 1995. doi:10.1119/1.17844 [https://doi.org/10.1119/1.17844].

Download Jupyter notebook: chemical-potential.ipynb

Download Python source code: chemical-potential.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Go to the end
to download the full example code

Dielectric profile calculation

Basic usage

In the following example, we will show how to calculate the dielectric profiles as
described in Dielectric constant measurement.

Before producing trajectories to calculate dielectric profiles, you will need to
consider which information you will need and thus need to print out. The dielectric
profile calculators need unwrapped positions and charges of all charged atoms in the
system. Unwrapped refers to the fact that you will need either “repaired” molecules
(which in GROMACS trjconv with the -pbc mol option can do for you) or you will
need to provide topology information for MAICoS to repair molecules for you during the
analysis. Note, however, that unwrapping adds overhead to your calculations. Therefore,
it is recommended to use a repaired trajectory if possible.

In the following, we will give an example of a trajectory of water confined by graphene
sheets simulated via GROMACS. We assume that the GROMACS topology is given by
graphene_water.tpr and the trajectory is given by graphene_water.xtc. Both can be
downloaded under topology and trajectory, respectively.

From these files you can create a MDAnalysis universe object.

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np

import maicos

u = mda.Universe("graphene_water.tpr", "graphene_water.xtc")

This universe object can then be passed to the dielectric profile analysis object,
documented in maicos.DielectricPlanar. It expects
you to pass the atom groups you want to perform the analysis for. In our example, we
have graphene walls and SPC/E water confined between them, where we are interested in
the dielectric behavior of the fluid. Thus, we will first select the water as an
MDAnalysis atom group using MDAnalysis.core.groups.AtomGroup.select_atoms() [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms]. In
this case we select the water by filtering for the residue named SOL.

According to the discussion above, we use an unwrapped trajectory and set the unwrap
= False keyword.

The simulation trajectory that we provide was simulated using Yeh-Berkowitz dipole
correction. So we don’t want to include dipole corrections, because we assume that our
simulation data adequately represents a 2d-periodic system. For systems that are not
2d-periodic, one should set the is_3d argument to True [https://docs.python.org/3/library/constants.html#True] to include the
dipole correction (see Dielectric constant measurement or the section on boundary
conditions down below).

Since we included a large vacuum region in our simulation that is not of interest for
the dielectric profile, we can set the refgroup to the group containing our water
molecules. This will calculate the dielectric profile relative to the center of mass
of the water in the region of interest.

water = u.select_atoms("resname SOL")
Create the analysis object with the appropriate parameters.
analysis_obj = maicos.DielectricPlanar(water, bin_width=0.1, refgroup=water)

This creates the analysis object, but does not yet perform the analysis. To this end
we call the member function run. We may set the verbose
keyword to True [https://docs.python.org/3/library/constants.html#True] to get additional information like a progress bar.

Here you also have the chance to set start and stop keywords to specify which
frames the analysis should start at and where to end. One can also specify a step
keyword to only analyze every step frames.

analysis_obj.run(step=5)

/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-packages/maicos/core/base.py:456: UserWarning: Your data seems to be correlated with a correlation time which is 2.55 times larger than your step size. Consider increasing your step size by a factor of 5 to get a reasonable error estimate.
 self.corrtime = correlation_analysis(self.timeseries)

<maicos.modules.dielectricplanar.DielectricPlanar object at 0x7fad79bdfe50>

Here we use step = 5 to run a fast analysis. You may reduce the step parameter
to gain a higher accuracy. Note that the analysis issues a warning concerning the
correlation time of the trajectory, which is automatically calculated as an indication
of how far apart the frames should be chosen to get a statistically uncertainty
indicator estimate. For small trajectories such as the one in this example, this
estimate is not very reliable and one should perform the analysis for longer
trajectories for actual production runs.

Hence, we will ignore the warning for the purpose of this example. Now we are ready to
plot the results. MAICoS provides the outcome of the calculation as sub-attributes of
the results attribute of the analysis object. The results object contains several
attributes that can be accessed directly. For example, the bin positions are stored in
the bin_pos attribute, the parallel and perpendicular dielectric profiles in the
eps_par and eps_perp attributes respectively. (See
maicos.DielectricPlanar for a full list of
attributes.)

For this example, we plot both profiles using matplotlib. Note that MAICoS always
centers the system at the origin or the selected refgroup, so here we set the limits
of the x-axis to [-7, 7]. Then we can only show the relevant part of the output (the
system has a width of 14 Å).

fig, ax = plt.subplots(2, sharex=True)

z = analysis_obj.results.bin_pos

ax[0].plot(z, analysis_obj.results.eps_perp)
ax[1].plot(z, analysis_obj.results.eps_par)

ax[0].set_ylabel(r"$\varepsilon^{-1}_{\perp} - 1$")
ax[1].set_ylabel(r"$\varepsilon_{\parallel} - 1$")

ax[1].set_xlabel(r"z")

Only plot the actual physical system:
ax[0].set_xlim([-7, 7])
ax[1].set_xlim([-7, 7])

Also plot the bulk values for reference
ax[0].axhline(1 / 71 - 1, color="black", linestyle="dashed")
ax[1].axhline(71 - 1, color="black", linestyle="dashed")

fig.tight_layout()
plt.show()

[image: dielectric profiles]A few notes on the results: The perpendicular component is given as the inverse of the
dielectric profile, which is the “natural” output (see Dielectric constant measurement
for more details). Furthermore, the bulk values expected for the SPC/E water model are
given as reference lines.

Notice that the parallel component is better converged than the perpendicular
component which in this very short trajectory is still noisy. For trajectories with a
duration of about 1 microsecond, the perpendicular component can be expected to be
converged.

Boundary Conditions

(See Dielectric constant measurement for a thorough discussion of the boundary
conditions). Here we only note that the is_3d flag has to be chosen carefully,
depending on if one simulated a truly 3d periodic system or a 2d periodic one.
Seldomly, vacuum boundary conditions might have been used for Ewald summations instead
of the more common tin-foil boundary conditions. In this case, the vac flag should
be set to True [https://docs.python.org/3/library/constants.html#True].

TIP4P Water and Molecules with Virtual Sites

One has to be careful when using the dielectric profile analysis for systems with
virtual sites, such as TIP4P water. The reason is that the virtual sites might not be
included in the trajectory, but instead are only constructed by the MD engine during
the force calculation. (For example some LAMMPS fixes)

This problem can be circumvented by creating the virtual sites by hand. This is done
by creating a transformation function that is added to the universe. This function is
called for every frame and can be used to create the virtual sites. The following
example shows how to do this for TIP4P/ε water from a LAMMPS trajectory. Here we only
shift the oxygen charge along the H-O-H angle bisector by a distance of 0.105 Å, which
is the distance between the oxygen charge and the virtual site in the TIP4P/ε water
model.

def transform_lammps_tip4p(
 oxygen_index_array: np.ndarray, distance: float
) -> mda.coordinates.timestep.Timestep:
 """Creates a transformation function where for lammps tip4p molecukes.

 oxygen_index_array is the array of indices where ``atom.type == oxygen_type``.
 I.e. given by ``np.where(universe.atoms.types == oxygen_type)[0]``.

 ``distance`` defines by how much the oxygen is moved in the H-O-H plane.
 """

 def wrapped(timestep):
 # shift oxygen charge in case of tip4p
 this_pos = timestep.positions
 for j in oxygen_index_array:
 # -2 * vec_o + vec_h1 + vec_h2
 vec = np.dot(np.array([-2, 1, 1]), this_pos[j : j + 3, :])
 unit_vec = vec / np.linalg.norm(vec)
 this_pos[j] += unit_vec * distance
 return timestep

 return wrapped

oxygen_index_array = u.select_atoms("type 2").indices

shift_tip4p_lammps = transform_lammps_tip4p(oxygen_index_array, 0.105)

u.trajectory.add_transformations(shift_tip4p_lammps)

Preliminary Output

As the dielectric analysis is usually run for long trajectories, analysis can take a
while. Hence, it is useful to get some preliminary output to see how the analysis is
progressing. Use the concfreq keyword to specify how often the analysis should
output the current results into data files on the disk. The concfreq keyword is
given in units of frames. For example, if concfreq = 100, the analysis will output
the current results to the data files every 100 frames.

Download Jupyter notebook: dielectric-profiles.ipynb

Download Python source code: dielectric-profiles.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Go to the end
to download the full example code

Pair distribution functions

Basic usage

In the following example, we will show how to calculate the two-dimensional planar
pair distribution functions.

In the following, we will give an example of a trajectory of water confined by graphene
sheets simulated via GROMACS. We assume that the GROMACS topology is given by
graphene_water.tpr and the trajectory is given by graphene_water.xtc. Both can be
downloaded under topology and
trajectory, respectively.

From these files you can create a MDAnalysis universe object.

We begin by importing the necessary modules.

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np

import maicos

Next, we proceed with the creation of a MDAnalysis universe object, from
which we further select the water molecules using the resname selector.

u = mda.Universe("./graphene_water.tpr", "graphene_water.xtc")

This universe object can then be passed to maicos.modules.pdfplanar.PDFPlanar
analysis object.
It expects you to pass the atom groups you want to perform the analysis for.
In our example, we have graphene walls and SPC/E water confined between them,
where we are interested in the dielectric behavior of the fluid.
Thus, we will first select the water as an MDAnalysis atom group using
MDAnalysis.core.groups.AtomGroup.select_atoms() [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms]. In this case we select
the water by filtering for the residue named SOL.

water = u.select_atoms("resname SOL")

ana_obj = maicos.PDFPlanar(
 water,
 water,
 dzheight=0.25,
 dim=2,
 pdf_bin_width=0.2,
 refgroup=water,
 zmin=-5.0,
 zmax=0,
)

Next, we can run the analysis over the trajectory.
To this end we call the member function
run.
We may set the verbose keyword to True to get additional information
such a a progress bar.

Here you also have the chance to set start and stop keywords to
specify which frames the analysis should start at and where to end.
One can also specify a step keyword to only analyze every step
frames.

ana_obj.run(verbose=True, step=1)

 0%| | 0/2001 [00:00<?, ?it/s]
 0%| | 3/2001 [00:00<01:10, 28.26it/s]
 0%| | 6/2001 [00:00<01:10, 28.37it/s]
 0%| | 9/2001 [00:00<01:10, 28.33it/s]
 1%| | 12/2001 [00:00<01:10, 28.29it/s]
 1%| | 15/2001 [00:00<01:10, 28.10it/s]
 1%| | 18/2001 [00:00<01:10, 28.09it/s]
 1%| | 21/2001 [00:00<01:10, 28.11it/s]
 1%| | 24/2001 [00:00<01:10, 28.05it/s]
 1%|▏ | 27/2001 [00:00<01:10, 28.03it/s]
 1%|▏ | 30/2001 [00:01<01:10, 28.01it/s]
 2%|▏ | 33/2001 [00:01<01:09, 28.12it/s]
 2%|▏ | 36/2001 [00:01<01:10, 28.06it/s]
 2%|▏ | 39/2001 [00:01<01:09, 28.08it/s]
 2%|▏ | 42/2001 [00:01<01:09, 28.07it/s]
 2%|▏ | 45/2001 [00:01<01:10, 27.82it/s]
 2%|▏ | 48/2001 [00:01<01:09, 27.95it/s]
 3%|▎ | 51/2001 [00:01<01:09, 27.98it/s]
 3%|▎ | 54/2001 [00:01<01:09, 27.94it/s]
 3%|▎ | 57/2001 [00:02<01:09, 27.95it/s]
 3%|▎ | 60/2001 [00:02<01:09, 28.05it/s]
 3%|▎ | 63/2001 [00:02<01:09, 28.02it/s]
 3%|▎ | 66/2001 [00:02<01:08, 28.06it/s]
 3%|▎ | 69/2001 [00:02<01:08, 28.02it/s]
 4%|▎ | 72/2001 [00:02<01:08, 28.05it/s]
 4%|▎ | 75/2001 [00:02<01:08, 28.00it/s]
 4%|▍ | 78/2001 [00:02<01:08, 27.96it/s]
 4%|▍ | 81/2001 [00:02<01:08, 27.95it/s]
 4%|▍ | 84/2001 [00:02<01:08, 27.92it/s]
 4%|▍ | 87/2001 [00:03<01:08, 27.95it/s]
 4%|▍ | 90/2001 [00:03<01:08, 27.95it/s]
 5%|▍ | 93/2001 [00:03<01:08, 27.97it/s]
 5%|▍ | 96/2001 [00:03<01:08, 27.97it/s]
 5%|▍ | 99/2001 [00:03<01:07, 28.03it/s]
 5%|▌ | 102/2001 [00:03<01:07, 28.10it/s]
 5%|▌ | 105/2001 [00:03<01:07, 28.14it/s]
 5%|▌ | 108/2001 [00:03<01:07, 28.02it/s]
 6%|▌ | 111/2001 [00:03<01:07, 28.06it/s]
 6%|▌ | 114/2001 [00:04<01:07, 28.00it/s]
 6%|▌ | 117/2001 [00:04<01:07, 28.05it/s]
 6%|▌ | 120/2001 [00:04<01:07, 28.07it/s]
 6%|▌ | 123/2001 [00:04<01:06, 28.04it/s]
 6%|▋ | 126/2001 [00:04<01:06, 27.99it/s]
 6%|▋ | 129/2001 [00:04<01:06, 27.96it/s]
 7%|▋ | 132/2001 [00:04<01:06, 28.06it/s]
 7%|▋ | 135/2001 [00:04<01:06, 28.08it/s]
 7%|▋ | 138/2001 [00:04<01:06, 28.05it/s]
 7%|▋ | 141/2001 [00:05<01:06, 28.04it/s]
 7%|▋ | 144/2001 [00:05<01:06, 28.08it/s]
 7%|▋ | 147/2001 [00:05<01:06, 28.06it/s]
 7%|▋ | 150/2001 [00:05<01:05, 28.08it/s]
 8%|▊ | 153/2001 [00:05<01:05, 28.05it/s]
 8%|▊ | 156/2001 [00:05<01:05, 28.08it/s]
 8%|▊ | 159/2001 [00:05<01:05, 28.08it/s]
 8%|▊ | 162/2001 [00:05<01:05, 28.14it/s]
 8%|▊ | 165/2001 [00:05<01:05, 28.18it/s]
 8%|▊ | 168/2001 [00:05<01:04, 28.28it/s]
 9%|▊ | 171/2001 [00:06<01:04, 28.17it/s]
 9%|▊ | 174/2001 [00:06<01:04, 28.19it/s]
 9%|▉ | 177/2001 [00:06<01:04, 28.15it/s]
 9%|▉ | 180/2001 [00:06<01:04, 28.16it/s]
 9%|▉ | 183/2001 [00:06<01:04, 28.03it/s]
 9%|▉ | 186/2001 [00:06<01:04, 28.13it/s]
 9%|▉ | 189/2001 [00:06<01:04, 28.12it/s]
 10%|▉ | 192/2001 [00:06<01:04, 28.05it/s]
 10%|▉ | 195/2001 [00:06<01:04, 27.96it/s]
 10%|▉ | 198/2001 [00:07<01:04, 27.98it/s]
 10%|█ | 201/2001 [00:07<01:04, 28.04it/s]
 10%|█ | 204/2001 [00:07<01:03, 28.11it/s]
 10%|█ | 207/2001 [00:07<01:03, 28.13it/s]
 10%|█ | 210/2001 [00:07<01:03, 28.11it/s]
 11%|█ | 213/2001 [00:07<01:03, 28.02it/s]
 11%|█ | 216/2001 [00:07<01:03, 27.92it/s]
 11%|█ | 219/2001 [00:07<01:03, 27.96it/s]
 11%|█ | 222/2001 [00:07<01:03, 28.02it/s]
 11%|█ | 225/2001 [00:08<01:03, 28.11it/s]
 11%|█▏ | 228/2001 [00:08<01:02, 28.19it/s]
 12%|█▏ | 231/2001 [00:08<01:02, 28.15it/s]
 12%|█▏ | 234/2001 [00:08<01:02, 28.17it/s]
 12%|█▏ | 237/2001 [00:08<01:02, 28.07it/s]
 12%|█▏ | 240/2001 [00:08<01:02, 28.07it/s]
 12%|█▏ | 243/2001 [00:08<01:02, 28.05it/s]
 12%|█▏ | 246/2001 [00:08<01:02, 28.06it/s]
 12%|█▏ | 249/2001 [00:08<01:02, 27.98it/s]
 13%|█▎ | 252/2001 [00:08<01:02, 27.89it/s]
 13%|█▎ | 255/2001 [00:09<01:02, 28.02it/s]
 13%|█▎ | 258/2001 [00:09<01:02, 28.07it/s]
 13%|█▎ | 261/2001 [00:09<01:01, 28.10it/s]
 13%|█▎ | 264/2001 [00:09<01:01, 28.10it/s]
 13%|█▎ | 267/2001 [00:09<01:01, 28.10it/s]
 13%|█▎ | 270/2001 [00:09<01:01, 28.18it/s]
 14%|█▎ | 273/2001 [00:09<01:01, 28.07it/s]
 14%|█▍ | 276/2001 [00:09<01:01, 28.12it/s]
 14%|█▍ | 279/2001 [00:09<01:01, 28.19it/s]
 14%|█▍ | 282/2001 [00:10<01:01, 28.13it/s]
 14%|█▍ | 285/2001 [00:10<01:00, 28.14it/s]
 14%|█▍ | 288/2001 [00:10<01:01, 28.07it/s]
 15%|█▍ | 291/2001 [00:10<01:01, 27.97it/s]
 15%|█▍ | 294/2001 [00:10<01:01, 27.96it/s]
 15%|█▍ | 297/2001 [00:10<01:00, 28.05it/s]
 15%|█▍ | 300/2001 [00:10<01:00, 27.99it/s]
 15%|█▌ | 303/2001 [00:10<01:00, 27.94it/s]
 15%|█▌ | 306/2001 [00:10<01:00, 27.94it/s]
 15%|█▌ | 309/2001 [00:11<01:00, 27.90it/s]
 16%|█▌ | 312/2001 [00:11<01:00, 27.92it/s]
 16%|█▌ | 315/2001 [00:11<01:00, 28.01it/s]
 16%|█▌ | 318/2001 [00:11<00:59, 28.09it/s]
 16%|█▌ | 321/2001 [00:11<00:59, 28.17it/s]
 16%|█▌ | 324/2001 [00:11<00:59, 28.27it/s]
 16%|█▋ | 327/2001 [00:11<00:59, 28.27it/s]
 16%|█▋ | 330/2001 [00:11<00:59, 28.31it/s]
 17%|█▋ | 333/2001 [00:11<00:58, 28.32it/s]
 17%|█▋ | 336/2001 [00:11<00:58, 28.30it/s]
 17%|█▋ | 339/2001 [00:12<00:58, 28.28it/s]
 17%|█▋ | 342/2001 [00:12<00:58, 28.32it/s]
 17%|█▋ | 345/2001 [00:12<00:58, 28.31it/s]
 17%|█▋ | 348/2001 [00:12<00:58, 28.22it/s]
 18%|█▊ | 351/2001 [00:12<00:58, 28.16it/s]
 18%|█▊ | 354/2001 [00:12<00:58, 28.11it/s]
 18%|█▊ | 357/2001 [00:12<00:58, 28.13it/s]
 18%|█▊ | 360/2001 [00:12<00:58, 28.09it/s]
 18%|█▊ | 363/2001 [00:12<00:58, 28.07it/s]
 18%|█▊ | 366/2001 [00:13<00:58, 28.03it/s]
 18%|█▊ | 369/2001 [00:13<00:58, 28.05it/s]
 19%|█▊ | 372/2001 [00:13<00:57, 28.17it/s]
 19%|█▊ | 375/2001 [00:13<00:57, 28.13it/s]
 19%|█▉ | 378/2001 [00:13<00:57, 28.17it/s]
 19%|█▉ | 381/2001 [00:13<00:57, 28.20it/s]
 19%|█▉ | 384/2001 [00:13<00:57, 28.12it/s]
 19%|█▉ | 387/2001 [00:13<00:57, 28.18it/s]
 19%|█▉ | 390/2001 [00:13<00:56, 28.28it/s]
 20%|█▉ | 393/2001 [00:13<00:56, 28.35it/s]
 20%|█▉ | 396/2001 [00:14<00:56, 28.29it/s]
 20%|█▉ | 399/2001 [00:14<00:56, 28.28it/s]
 20%|██ | 402/2001 [00:14<00:56, 28.31it/s]
 20%|██ | 405/2001 [00:14<00:56, 28.25it/s]
 20%|██ | 408/2001 [00:14<00:56, 28.18it/s]
 21%|██ | 411/2001 [00:14<00:56, 28.19it/s]
 21%|██ | 414/2001 [00:14<00:56, 28.20it/s]
 21%|██ | 417/2001 [00:14<00:56, 28.23it/s]
 21%|██ | 420/2001 [00:14<00:56, 28.07it/s]
 21%|██ | 423/2001 [00:15<00:56, 28.00it/s]
 21%|██▏ | 426/2001 [00:15<00:56, 28.04it/s]
 21%|██▏ | 429/2001 [00:15<00:56, 28.03it/s]
 22%|██▏ | 432/2001 [00:15<00:55, 28.06it/s]
 22%|██▏ | 435/2001 [00:15<00:55, 28.10it/s]
 22%|██▏ | 438/2001 [00:15<00:55, 28.07it/s]
 22%|██▏ | 441/2001 [00:15<00:55, 28.10it/s]
 22%|██▏ | 444/2001 [00:15<00:55, 28.17it/s]
 22%|██▏ | 447/2001 [00:15<00:57, 27.14it/s]
 22%|██▏ | 450/2001 [00:16<00:57, 26.96it/s]
 23%|██▎ | 453/2001 [00:16<00:56, 27.36it/s]
 23%|██▎ | 456/2001 [00:16<00:55, 27.61it/s]
 23%|██▎ | 459/2001 [00:16<00:55, 27.83it/s]
 23%|██▎ | 462/2001 [00:16<00:55, 27.96it/s]
 23%|██▎ | 465/2001 [00:16<00:54, 28.05it/s]
 23%|██▎ | 468/2001 [00:16<00:54, 28.07it/s]
 24%|██▎ | 471/2001 [00:16<00:54, 28.05it/s]
 24%|██▎ | 474/2001 [00:16<00:54, 27.99it/s]
 24%|██▍ | 477/2001 [00:17<00:54, 27.79it/s]
 24%|██▍ | 480/2001 [00:17<00:55, 27.61it/s]
 24%|██▍ | 483/2001 [00:17<00:54, 27.82it/s]
 24%|██▍ | 486/2001 [00:17<00:54, 27.98it/s]
 24%|██▍ | 489/2001 [00:17<00:54, 27.91it/s]
 25%|██▍ | 492/2001 [00:17<00:53, 27.96it/s]
 25%|██▍ | 495/2001 [00:17<00:53, 28.08it/s]
 25%|██▍ | 498/2001 [00:17<00:53, 28.24it/s]
 25%|██▌ | 501/2001 [00:17<00:53, 28.15it/s]
 25%|██▌ | 504/2001 [00:17<00:53, 28.18it/s]
 25%|██▌ | 507/2001 [00:18<00:52, 28.22it/s]
 25%|██▌ | 510/2001 [00:18<00:52, 28.27it/s]
 26%|██▌ | 513/2001 [00:18<00:52, 28.25it/s]
 26%|██▌ | 516/2001 [00:18<00:52, 28.28it/s]
 26%|██▌ | 519/2001 [00:18<00:52, 28.17it/s]
 26%|██▌ | 522/2001 [00:18<00:52, 28.16it/s]
 26%|██▌ | 525/2001 [00:18<00:52, 28.10it/s]
 26%|██▋ | 528/2001 [00:18<00:52, 28.00it/s]
 27%|██▋ | 531/2001 [00:18<00:52, 28.02it/s]
 27%|██▋ | 534/2001 [00:19<00:52, 28.01it/s]
 27%|██▋ | 537/2001 [00:19<00:52, 28.03it/s]
 27%|██▋ | 540/2001 [00:19<00:51, 28.13it/s]
 27%|██▋ | 543/2001 [00:19<00:51, 28.18it/s]
 27%|██▋ | 546/2001 [00:19<00:51, 28.17it/s]
 27%|██▋ | 549/2001 [00:19<00:51, 28.19it/s]
 28%|██▊ | 552/2001 [00:19<00:51, 28.20it/s]
 28%|██▊ | 555/2001 [00:19<00:51, 28.15it/s]
 28%|██▊ | 558/2001 [00:19<00:51, 28.15it/s]
 28%|██▊ | 561/2001 [00:19<00:51, 28.16it/s]
 28%|██▊ | 564/2001 [00:20<00:50, 28.19it/s]
 28%|██▊ | 567/2001 [00:20<00:50, 28.22it/s]
 28%|██▊ | 570/2001 [00:20<00:50, 28.30it/s]
 29%|██▊ | 573/2001 [00:20<00:50, 28.21it/s]
 29%|██▉ | 576/2001 [00:20<00:50, 28.13it/s]
 29%|██▉ | 579/2001 [00:20<00:50, 28.10it/s]
 29%|██▉ | 582/2001 [00:20<00:50, 28.14it/s]
 29%|██▉ | 585/2001 [00:20<00:50, 28.02it/s]
 29%|██▉ | 588/2001 [00:20<00:50, 27.93it/s]
 30%|██▉ | 591/2001 [00:21<00:50, 27.88it/s]
 30%|██▉ | 594/2001 [00:21<00:50, 28.05it/s]
 30%|██▉ | 597/2001 [00:21<00:51, 27.13it/s]
 30%|██▉ | 600/2001 [00:21<00:52, 26.61it/s]
 30%|███ | 603/2001 [00:21<00:53, 26.22it/s]
 30%|███ | 606/2001 [00:21<00:53, 25.92it/s]
 30%|███ | 609/2001 [00:21<00:52, 26.51it/s]
 31%|███ | 612/2001 [00:21<00:51, 26.93it/s]
 31%|███ | 615/2001 [00:21<00:50, 27.29it/s]
 31%|███ | 618/2001 [00:22<00:50, 27.49it/s]
 31%|███ | 621/2001 [00:22<00:49, 27.72it/s]
 31%|███ | 624/2001 [00:22<00:49, 27.86it/s]
 31%|███▏ | 627/2001 [00:22<00:49, 27.96it/s]
 31%|███▏ | 630/2001 [00:22<00:49, 27.94it/s]
 32%|███▏ | 633/2001 [00:22<00:48, 27.97it/s]
 32%|███▏ | 636/2001 [00:22<00:48, 27.95it/s]
 32%|███▏ | 639/2001 [00:22<00:48, 27.94it/s]
 32%|███▏ | 642/2001 [00:22<00:48, 27.99it/s]
 32%|███▏ | 645/2001 [00:23<00:48, 27.99it/s]
 32%|███▏ | 648/2001 [00:23<00:48, 28.06it/s]
 33%|███▎ | 651/2001 [00:23<00:48, 28.11it/s]
 33%|███▎ | 654/2001 [00:23<00:47, 28.17it/s]
 33%|███▎ | 657/2001 [00:23<00:47, 28.22it/s]
 33%|███▎ | 660/2001 [00:23<00:47, 28.19it/s]
 33%|███▎ | 663/2001 [00:23<00:47, 28.22it/s]
 33%|███▎ | 666/2001 [00:23<00:47, 28.20it/s]
 33%|███▎ | 669/2001 [00:23<00:47, 28.22it/s]
 34%|███▎ | 672/2001 [00:23<00:48, 27.51it/s]
 34%|███▎ | 675/2001 [00:24<00:47, 27.68it/s]
 34%|███▍ | 678/2001 [00:24<00:47, 27.83it/s]
 34%|███▍ | 681/2001 [00:24<00:47, 27.87it/s]
 34%|███▍ | 684/2001 [00:24<00:47, 27.92it/s]
 34%|███▍ | 687/2001 [00:24<00:46, 28.04it/s]
 34%|███▍ | 690/2001 [00:24<00:46, 28.14it/s]
 35%|███▍ | 693/2001 [00:24<00:46, 28.13it/s]
 35%|███▍ | 696/2001 [00:24<00:46, 28.08it/s]
 35%|███▍ | 699/2001 [00:24<00:46, 28.04it/s]
 35%|███▌ | 702/2001 [00:25<00:46, 27.94it/s]
 35%|███▌ | 705/2001 [00:25<00:46, 28.04it/s]
 35%|███▌ | 708/2001 [00:25<00:46, 28.03it/s]
 36%|███▌ | 711/2001 [00:25<00:45, 28.11it/s]
 36%|███▌ | 714/2001 [00:25<00:45, 28.11it/s]
 36%|███▌ | 717/2001 [00:25<00:45, 28.11it/s]
 36%|███▌ | 720/2001 [00:25<00:45, 28.07it/s]
 36%|███▌ | 723/2001 [00:25<00:45, 28.01it/s]
 36%|███▋ | 726/2001 [00:25<00:45, 28.09it/s]
 36%|███▋ | 729/2001 [00:26<00:45, 28.13it/s]
 37%|███▋ | 732/2001 [00:26<00:45, 28.03it/s]
 37%|███▋ | 735/2001 [00:26<00:45, 28.10it/s]
 37%|███▋ | 738/2001 [00:26<00:45, 28.06it/s]
 37%|███▋ | 741/2001 [00:26<00:44, 28.17it/s]
 37%|███▋ | 744/2001 [00:26<00:44, 28.06it/s]
 37%|███▋ | 747/2001 [00:26<00:45, 27.63it/s]
 37%|███▋ | 750/2001 [00:26<00:45, 27.76it/s]
 38%|███▊ | 753/2001 [00:26<00:45, 27.18it/s]
 38%|███▊ | 756/2001 [00:27<00:46, 26.55it/s]
 38%|███▊ | 759/2001 [00:27<00:46, 26.53it/s]
 38%|███▊ | 762/2001 [00:27<00:46, 26.93it/s]
 38%|███▊ | 765/2001 [00:27<00:45, 27.29it/s]
 38%|███▊ | 768/2001 [00:27<00:44, 27.56it/s]
 39%|███▊ | 771/2001 [00:27<00:44, 27.81it/s]
 39%|███▊ | 774/2001 [00:27<00:44, 27.82it/s]
 39%|███▉ | 777/2001 [00:27<00:43, 27.83it/s]
 39%|███▉ | 780/2001 [00:27<00:43, 27.94it/s]
 39%|███▉ | 783/2001 [00:27<00:43, 28.14it/s]
 39%|███▉ | 786/2001 [00:28<00:43, 28.14it/s]
 39%|███▉ | 789/2001 [00:28<00:42, 28.25it/s]
 40%|███▉ | 792/2001 [00:28<00:42, 28.30it/s]
 40%|███▉ | 795/2001 [00:28<00:42, 28.27it/s]
 40%|███▉ | 798/2001 [00:28<00:42, 28.22it/s]
 40%|████ | 801/2001 [00:28<00:42, 28.10it/s]
 40%|████ | 804/2001 [00:28<00:42, 28.15it/s]
 40%|████ | 807/2001 [00:28<00:42, 28.14it/s]
 40%|████ | 810/2001 [00:28<00:42, 28.09it/s]
 41%|████ | 813/2001 [00:29<00:42, 28.09it/s]
 41%|████ | 816/2001 [00:29<00:42, 28.17it/s]
 41%|████ | 819/2001 [00:29<00:41, 28.18it/s]
 41%|████ | 822/2001 [00:29<00:41, 28.26it/s]
 41%|████ | 825/2001 [00:29<00:41, 28.30it/s]
 41%|████▏ | 828/2001 [00:29<00:41, 28.21it/s]
 42%|████▏ | 831/2001 [00:29<00:41, 28.15it/s]
 42%|████▏ | 834/2001 [00:29<00:41, 28.15it/s]
 42%|████▏ | 837/2001 [00:29<00:41, 28.20it/s]
 42%|████▏ | 840/2001 [00:29<00:41, 28.28it/s]
 42%|████▏ | 843/2001 [00:30<00:41, 28.22it/s]
 42%|████▏ | 846/2001 [00:30<00:40, 28.18it/s]
 42%|████▏ | 849/2001 [00:30<00:40, 28.14it/s]
 43%|████▎ | 852/2001 [00:30<00:40, 28.03it/s]
 43%|████▎ | 855/2001 [00:30<00:40, 28.06it/s]
 43%|████▎ | 858/2001 [00:30<00:40, 28.10it/s]
 43%|████▎ | 861/2001 [00:30<00:40, 28.10it/s]
 43%|████▎ | 864/2001 [00:30<00:40, 28.05it/s]
 43%|████▎ | 867/2001 [00:30<00:40, 27.98it/s]
 43%|████▎ | 870/2001 [00:31<00:40, 27.90it/s]
 44%|████▎ | 873/2001 [00:31<00:40, 28.02it/s]
 44%|████▍ | 876/2001 [00:31<00:40, 28.03it/s]
 44%|████▍ | 879/2001 [00:31<00:39, 28.13it/s]
 44%|████▍ | 882/2001 [00:31<00:39, 28.20it/s]
 44%|████▍ | 885/2001 [00:31<00:39, 28.30it/s]
 44%|████▍ | 888/2001 [00:31<00:39, 28.29it/s]
 45%|████▍ | 891/2001 [00:31<00:39, 28.32it/s]
 45%|████▍ | 894/2001 [00:31<00:39, 28.28it/s]
 45%|████▍ | 897/2001 [00:32<00:38, 28.37it/s]
 45%|████▍ | 900/2001 [00:32<00:38, 28.36it/s]
 45%|████▌ | 903/2001 [00:32<00:38, 28.26it/s]
 45%|████▌ | 906/2001 [00:32<00:38, 28.19it/s]
 45%|████▌ | 909/2001 [00:32<00:38, 28.15it/s]
 46%|████▌ | 912/2001 [00:32<00:38, 28.20it/s]
 46%|████▌ | 915/2001 [00:32<00:38, 28.21it/s]
 46%|████▌ | 918/2001 [00:32<00:38, 28.24it/s]
 46%|████▌ | 921/2001 [00:32<00:38, 28.20it/s]
 46%|████▌ | 924/2001 [00:32<00:38, 28.08it/s]
 46%|████▋ | 927/2001 [00:33<00:38, 28.00it/s]
 46%|████▋ | 930/2001 [00:33<00:38, 28.01it/s]
 47%|████▋ | 933/2001 [00:33<00:38, 28.00it/s]
 47%|████▋ | 936/2001 [00:33<00:38, 28.02it/s]
 47%|████▋ | 939/2001 [00:33<00:37, 28.06it/s]
 47%|████▋ | 942/2001 [00:33<00:37, 28.18it/s]
 47%|████▋ | 945/2001 [00:33<00:37, 28.20it/s]
 47%|████▋ | 948/2001 [00:33<00:37, 28.26it/s]
 48%|████▊ | 951/2001 [00:33<00:37, 28.22it/s]
 48%|████▊ | 954/2001 [00:34<00:37, 28.17it/s]
 48%|████▊ | 957/2001 [00:34<00:37, 28.16it/s]
 48%|████▊ | 960/2001 [00:34<00:37, 28.09it/s]
 48%|████▊ | 963/2001 [00:34<00:36, 28.14it/s]
 48%|████▊ | 966/2001 [00:34<00:36, 28.09it/s]
 48%|████▊ | 969/2001 [00:34<00:36, 28.12it/s]
 49%|████▊ | 972/2001 [00:34<00:36, 28.16it/s]
 49%|████▊ | 975/2001 [00:34<00:36, 28.12it/s]
 49%|████▉ | 978/2001 [00:34<00:36, 28.11it/s]
 49%|████▉ | 981/2001 [00:35<00:36, 28.03it/s]
 49%|████▉ | 984/2001 [00:35<00:36, 27.99it/s]
 49%|████▉ | 987/2001 [00:35<00:36, 28.04it/s]
 49%|████▉ | 990/2001 [00:35<00:35, 28.11it/s]
 50%|████▉ | 993/2001 [00:35<00:35, 28.18it/s]
 50%|████▉ | 996/2001 [00:35<00:35, 28.20it/s]
 50%|████▉ | 999/2001 [00:35<00:35, 28.28it/s]
 50%|█████ | 1002/2001 [00:35<00:35, 28.21it/s]
 50%|█████ | 1005/2001 [00:35<00:35, 28.10it/s]
 50%|█████ | 1008/2001 [00:35<00:35, 28.05it/s]
 51%|█████ | 1011/2001 [00:36<00:35, 28.05it/s]
 51%|█████ | 1014/2001 [00:36<00:35, 28.14it/s]
 51%|█████ | 1017/2001 [00:36<00:35, 28.03it/s]
 51%|█████ | 1020/2001 [00:36<00:34, 28.12it/s]
 51%|█████ | 1023/2001 [00:36<00:34, 27.99it/s]
 51%|█████▏ | 1026/2001 [00:36<00:34, 28.01it/s]
 51%|█████▏ | 1029/2001 [00:36<00:34, 27.98it/s]
 52%|█████▏ | 1032/2001 [00:36<00:34, 27.97it/s]
 52%|█████▏ | 1035/2001 [00:36<00:34, 27.95it/s]
 52%|█████▏ | 1038/2001 [00:37<00:34, 27.99it/s]
 52%|█████▏ | 1041/2001 [00:37<00:34, 28.05it/s]
 52%|█████▏ | 1044/2001 [00:37<00:33, 28.23it/s]
 52%|█████▏ | 1047/2001 [00:37<00:33, 28.27it/s]
 52%|█████▏ | 1050/2001 [00:37<00:33, 28.25it/s]
 53%|█████▎ | 1053/2001 [00:37<00:33, 28.19it/s]
 53%|█████▎ | 1056/2001 [00:37<00:33, 28.17it/s]
 53%|█████▎ | 1059/2001 [00:37<00:33, 28.25it/s]
 53%|█████▎ | 1062/2001 [00:37<00:33, 28.27it/s]
 53%|█████▎ | 1065/2001 [00:37<00:33, 28.28it/s]
 53%|█████▎ | 1068/2001 [00:38<00:32, 28.39it/s]
 54%|█████▎ | 1071/2001 [00:38<00:32, 28.44it/s]
 54%|█████▎ | 1074/2001 [00:38<00:32, 28.47it/s]
 54%|█████▍ | 1077/2001 [00:38<00:32, 28.41it/s]
 54%|█████▍ | 1080/2001 [00:38<00:32, 28.23it/s]
 54%|█████▍ | 1083/2001 [00:38<00:32, 28.22it/s]
 54%|█████▍ | 1086/2001 [00:38<00:32, 28.11it/s]
 54%|█████▍ | 1089/2001 [00:38<00:32, 28.04it/s]
 55%|█████▍ | 1092/2001 [00:38<00:32, 28.03it/s]
 55%|█████▍ | 1095/2001 [00:39<00:32, 27.97it/s]
 55%|█████▍ | 1098/2001 [00:39<00:32, 28.00it/s]
 55%|█████▌ | 1101/2001 [00:39<00:32, 28.06it/s]
 55%|█████▌ | 1104/2001 [00:39<00:31, 28.18it/s]
 55%|█████▌ | 1107/2001 [00:39<00:31, 28.24it/s]
 55%|█████▌ | 1110/2001 [00:39<00:31, 28.17it/s]
 56%|█████▌ | 1113/2001 [00:39<00:31, 28.07it/s]
 56%|█████▌ | 1116/2001 [00:39<00:31, 28.25it/s]
 56%|█████▌ | 1119/2001 [00:39<00:31, 28.26it/s]
 56%|█████▌ | 1122/2001 [00:40<00:31, 28.31it/s]
 56%|█████▌ | 1125/2001 [00:40<00:30, 28.27it/s]
 56%|█████▋ | 1128/2001 [00:40<00:31, 28.12it/s]
 57%|█████▋ | 1131/2001 [00:40<00:30, 28.12it/s]
 57%|█████▋ | 1134/2001 [00:40<00:30, 28.14it/s]
 57%|█████▋ | 1137/2001 [00:40<00:30, 28.05it/s]
 57%|█████▋ | 1140/2001 [00:40<00:30, 28.10it/s]
 57%|█████▋ | 1143/2001 [00:40<00:30, 28.11it/s]
 57%|█████▋ | 1146/2001 [00:40<00:30, 28.07it/s]
 57%|█████▋ | 1149/2001 [00:40<00:30, 28.01it/s]
 58%|█████▊ | 1152/2001 [00:41<00:30, 27.95it/s]
 58%|█████▊ | 1155/2001 [00:41<00:30, 28.01it/s]
 58%|█████▊ | 1158/2001 [00:41<00:29, 28.14it/s]
 58%|█████▊ | 1161/2001 [00:41<00:29, 28.19it/s]
 58%|█████▊ | 1164/2001 [00:41<00:29, 28.15it/s]
 58%|█████▊ | 1167/2001 [00:41<00:29, 28.11it/s]
 58%|█████▊ | 1170/2001 [00:41<00:29, 28.11it/s]
 59%|█████▊ | 1173/2001 [00:41<00:29, 28.20it/s]
 59%|█████▉ | 1176/2001 [00:41<00:29, 28.16it/s]
 59%|█████▉ | 1179/2001 [00:42<00:29, 28.17it/s]
 59%|█████▉ | 1182/2001 [00:42<00:29, 28.11it/s]
 59%|█████▉ | 1185/2001 [00:42<00:29, 28.10it/s]
 59%|█████▉ | 1188/2001 [00:42<00:28, 28.12it/s]
 60%|█████▉ | 1191/2001 [00:42<00:29, 27.76it/s]
 60%|█████▉ | 1194/2001 [00:42<00:28, 27.86it/s]
 60%|█████▉ | 1197/2001 [00:42<00:28, 27.91it/s]
 60%|█████▉ | 1200/2001 [00:42<00:28, 27.89it/s]
 60%|██████ | 1203/2001 [00:42<00:28, 27.82it/s]
 60%|██████ | 1206/2001 [00:43<00:28, 27.76it/s]
 60%|██████ | 1209/2001 [00:43<00:28, 27.86it/s]
 61%|██████ | 1212/2001 [00:43<00:28, 28.01it/s]
 61%|██████ | 1215/2001 [00:43<00:27, 28.08it/s]
 61%|██████ | 1218/2001 [00:43<00:27, 28.18it/s]
 61%|██████ | 1221/2001 [00:43<00:27, 28.29it/s]
 61%|██████ | 1224/2001 [00:43<00:27, 28.30it/s]
 61%|██████▏ | 1227/2001 [00:43<00:27, 28.22it/s]
 61%|██████▏ | 1230/2001 [00:43<00:27, 28.20it/s]
 62%|██████▏ | 1233/2001 [00:43<00:27, 28.19it/s]
 62%|██████▏ | 1236/2001 [00:44<00:27, 28.24it/s]
 62%|██████▏ | 1239/2001 [00:44<00:26, 28.30it/s]
 62%|██████▏ | 1242/2001 [00:44<00:26, 28.41it/s]
 62%|██████▏ | 1245/2001 [00:44<00:26, 28.32it/s]
 62%|██████▏ | 1248/2001 [00:44<00:26, 28.19it/s]
 63%|██████▎ | 1251/2001 [00:44<00:26, 28.22it/s]
 63%|██████▎ | 1254/2001 [00:44<00:26, 28.22it/s]
 63%|██████▎ | 1257/2001 [00:44<00:26, 28.20it/s]
 63%|██████▎ | 1260/2001 [00:44<00:26, 28.18it/s]
 63%|██████▎ | 1263/2001 [00:45<00:26, 27.96it/s]
 63%|██████▎ | 1266/2001 [00:45<00:26, 27.90it/s]
 63%|██████▎ | 1269/2001 [00:45<00:26, 28.03it/s]
 64%|██████▎ | 1272/2001 [00:45<00:25, 28.14it/s]
 64%|██████▎ | 1275/2001 [00:45<00:25, 28.18it/s]
 64%|██████▍ | 1278/2001 [00:45<00:25, 28.18it/s]
 64%|██████▍ | 1281/2001 [00:45<00:25, 28.17it/s]
 64%|██████▍ | 1284/2001 [00:45<00:25, 28.20it/s]
 64%|██████▍ | 1287/2001 [00:45<00:25, 28.26it/s]
 64%|██████▍ | 1290/2001 [00:45<00:25, 28.22it/s]
 65%|██████▍ | 1293/2001 [00:46<00:25, 28.16it/s]
 65%|██████▍ | 1296/2001 [00:46<00:25, 28.19it/s]
 65%|██████▍ | 1299/2001 [00:46<00:24, 28.18it/s]
 65%|██████▌ | 1302/2001 [00:46<00:24, 28.09it/s]
 65%|██████▌ | 1305/2001 [00:46<00:24, 27.94it/s]
 65%|██████▌ | 1308/2001 [00:46<00:24, 27.98it/s]
 66%|██████▌ | 1311/2001 [00:46<00:24, 28.03it/s]
 66%|██████▌ | 1314/2001 [00:46<00:24, 28.00it/s]
 66%|██████▌ | 1317/2001 [00:46<00:24, 27.97it/s]
 66%|██████▌ | 1320/2001 [00:47<00:24, 27.71it/s]
 66%|██████▌ | 1323/2001 [00:47<00:24, 27.74it/s]
 66%|██████▋ | 1326/2001 [00:47<00:24, 27.93it/s]
 66%|██████▋ | 1329/2001 [00:47<00:23, 28.00it/s]
 67%|██████▋ | 1332/2001 [00:47<00:23, 28.04it/s]
 67%|██████▋ | 1335/2001 [00:47<00:23, 27.98it/s]
 67%|██████▋ | 1338/2001 [00:47<00:23, 28.06it/s]
 67%|██████▋ | 1341/2001 [00:47<00:23, 28.12it/s]
 67%|██████▋ | 1344/2001 [00:47<00:23, 28.20it/s]
 67%|██████▋ | 1347/2001 [00:48<00:23, 28.18it/s]
 67%|██████▋ | 1350/2001 [00:48<00:23, 28.14it/s]
 68%|██████▊ | 1353/2001 [00:48<00:23, 28.10it/s]
 68%|██████▊ | 1356/2001 [00:48<00:22, 28.09it/s]
 68%|██████▊ | 1359/2001 [00:48<00:22, 28.02it/s]
 68%|██████▊ | 1362/2001 [00:48<00:22, 28.02it/s]
 68%|██████▊ | 1365/2001 [00:48<00:22, 28.03it/s]
 68%|██████▊ | 1368/2001 [00:48<00:22, 28.11it/s]
 69%|██████▊ | 1371/2001 [00:48<00:22, 28.11it/s]
 69%|██████▊ | 1374/2001 [00:48<00:22, 28.05it/s]
 69%|██████▉ | 1377/2001 [00:49<00:22, 28.02it/s]
 69%|██████▉ | 1380/2001 [00:49<00:22, 28.00it/s]
 69%|██████▉ | 1383/2001 [00:49<00:22, 28.05it/s]
 69%|██████▉ | 1386/2001 [00:49<00:21, 28.14it/s]
 69%|██████▉ | 1389/2001 [00:49<00:21, 28.23it/s]
 70%|██████▉ | 1392/2001 [00:49<00:21, 28.30it/s]
 70%|██████▉ | 1395/2001 [00:49<00:21, 28.17it/s]
 70%|██████▉ | 1398/2001 [00:49<00:21, 28.16it/s]
 70%|███████ | 1401/2001 [00:49<00:21, 28.06it/s]
 70%|███████ | 1404/2001 [00:50<00:21, 28.09it/s]
 70%|███████ | 1407/2001 [00:50<00:21, 28.04it/s]
 70%|███████ | 1410/2001 [00:50<00:21, 28.14it/s]
 71%|███████ | 1413/2001 [00:50<00:20, 28.24it/s]
 71%|███████ | 1416/2001 [00:50<00:20, 28.29it/s]
 71%|███████ | 1419/2001 [00:50<00:20, 28.21it/s]
 71%|███████ | 1422/2001 [00:50<00:20, 28.10it/s]
 71%|███████ | 1425/2001 [00:50<00:20, 28.11it/s]
 71%|███████▏ | 1428/2001 [00:50<00:20, 28.00it/s]
 72%|███████▏ | 1431/2001 [00:51<00:20, 28.04it/s]
 72%|███████▏ | 1434/2001 [00:51<00:20, 28.02it/s]
 72%|███████▏ | 1437/2001 [00:51<00:20, 28.08it/s]
 72%|███████▏ | 1440/2001 [00:51<00:19, 28.19it/s]
 72%|███████▏ | 1443/2001 [00:51<00:19, 28.19it/s]
 72%|███████▏ | 1446/2001 [00:51<00:19, 28.09it/s]
 72%|███████▏ | 1449/2001 [00:51<00:19, 28.06it/s]
 73%|███████▎ | 1452/2001 [00:51<00:19, 28.04it/s]
 73%|███████▎ | 1455/2001 [00:51<00:19, 27.95it/s]
 73%|███████▎ | 1458/2001 [00:51<00:19, 28.07it/s]
 73%|███████▎ | 1461/2001 [00:52<00:19, 28.17it/s]
 73%|███████▎ | 1464/2001 [00:52<00:19, 28.12it/s]
 73%|███████▎ | 1467/2001 [00:52<00:18, 28.11it/s]
 73%|███████▎ | 1470/2001 [00:52<00:18, 28.08it/s]
 74%|███████▎ | 1473/2001 [00:52<00:18, 28.02it/s]
 74%|███████▍ | 1476/2001 [00:52<00:18, 28.01it/s]
 74%|███████▍ | 1479/2001 [00:52<00:18, 28.00it/s]
 74%|███████▍ | 1482/2001 [00:52<00:18, 27.93it/s]
 74%|███████▍ | 1485/2001 [00:52<00:18, 27.93it/s]
 74%|███████▍ | 1488/2001 [00:53<00:18, 27.90it/s]
 75%|███████▍ | 1491/2001 [00:53<00:18, 27.99it/s]
 75%|███████▍ | 1494/2001 [00:53<00:18, 28.08it/s]
 75%|███████▍ | 1497/2001 [00:53<00:17, 28.09it/s]
 75%|███████▍ | 1500/2001 [00:53<00:17, 28.18it/s]
 75%|███████▌ | 1503/2001 [00:53<00:17, 28.07it/s]
 75%|███████▌ | 1506/2001 [00:53<00:17, 28.15it/s]
 75%|███████▌ | 1509/2001 [00:53<00:17, 28.22it/s]
 76%|███████▌ | 1512/2001 [00:53<00:17, 28.27it/s]
 76%|███████▌ | 1515/2001 [00:54<00:17, 28.26it/s]
 76%|███████▌ | 1518/2001 [00:54<00:17, 28.28it/s]
 76%|███████▌ | 1521/2001 [00:54<00:16, 28.34it/s]
 76%|███████▌ | 1524/2001 [00:54<00:16, 28.33it/s]
 76%|███████▋ | 1527/2001 [00:54<00:16, 28.27it/s]
 76%|███████▋ | 1530/2001 [00:54<00:16, 28.21it/s]
 77%|███████▋ | 1533/2001 [00:54<00:16, 28.23it/s]
 77%|███████▋ | 1536/2001 [00:54<00:16, 28.18it/s]
 77%|███████▋ | 1539/2001 [00:54<00:16, 28.19it/s]
 77%|███████▋ | 1542/2001 [00:54<00:16, 28.13it/s]
 77%|███████▋ | 1545/2001 [00:55<00:16, 28.13it/s]
 77%|███████▋ | 1548/2001 [00:55<00:16, 28.15it/s]
 78%|███████▊ | 1551/2001 [00:55<00:15, 28.21it/s]
 78%|███████▊ | 1554/2001 [00:55<00:15, 28.31it/s]
 78%|███████▊ | 1557/2001 [00:55<00:15, 28.35it/s]
 78%|███████▊ | 1560/2001 [00:55<00:15, 28.31it/s]
 78%|███████▊ | 1563/2001 [00:55<00:15, 28.43it/s]
 78%|███████▊ | 1566/2001 [00:55<00:15, 28.39it/s]
 78%|███████▊ | 1569/2001 [00:55<00:15, 28.38it/s]
 79%|███████▊ | 1572/2001 [00:56<00:15, 28.29it/s]
 79%|███████▊ | 1575/2001 [00:56<00:15, 28.17it/s]
 79%|███████▉ | 1578/2001 [00:56<00:14, 28.20it/s]
 79%|███████▉ | 1581/2001 [00:56<00:14, 28.24it/s]
 79%|███████▉ | 1584/2001 [00:56<00:14, 28.29it/s]
 79%|███████▉ | 1587/2001 [00:56<00:14, 28.03it/s]
 79%|███████▉ | 1590/2001 [00:56<00:14, 28.14it/s]
 80%|███████▉ | 1593/2001 [00:56<00:14, 27.95it/s]
 80%|███████▉ | 1596/2001 [00:56<00:14, 27.97it/s]
 80%|███████▉ | 1599/2001 [00:56<00:14, 27.95it/s]
 80%|████████ | 1602/2001 [00:57<00:14, 27.85it/s]
 80%|████████ | 1605/2001 [00:57<00:14, 27.88it/s]
 80%|████████ | 1608/2001 [00:57<00:14, 28.05it/s]
 81%|████████ | 1611/2001 [00:57<00:13, 28.09it/s]
 81%|████████ | 1614/2001 [00:57<00:13, 28.10it/s]
 81%|████████ | 1617/2001 [00:57<00:13, 28.09it/s]
 81%|████████ | 1620/2001 [00:57<00:13, 28.13it/s]
 81%|████████ | 1623/2001 [00:57<00:13, 28.05it/s]
 81%|████████▏ | 1626/2001 [00:57<00:13, 28.05it/s]
 81%|████████▏ | 1629/2001 [00:58<00:13, 27.96it/s]
 82%|████████▏ | 1632/2001 [00:58<00:13, 28.01it/s]
 82%|████████▏ | 1635/2001 [00:58<00:13, 28.05it/s]
 82%|████████▏ | 1638/2001 [00:58<00:12, 28.01it/s]
 82%|████████▏ | 1641/2001 [00:58<00:12, 27.99it/s]
 82%|████████▏ | 1644/2001 [00:58<00:12, 28.01it/s]
 82%|████████▏ | 1647/2001 [00:58<00:12, 28.07it/s]
 82%|████████▏ | 1650/2001 [00:58<00:12, 28.06it/s]
 83%|████████▎ | 1653/2001 [00:58<00:12, 28.04it/s]
 83%|████████▎ | 1656/2001 [00:59<00:12, 28.03it/s]
 83%|████████▎ | 1659/2001 [00:59<00:12, 28.06it/s]
 83%|████████▎ | 1662/2001 [00:59<00:12, 28.16it/s]
 83%|████████▎ | 1665/2001 [00:59<00:11, 28.25it/s]
 83%|████████▎ | 1668/2001 [00:59<00:11, 28.29it/s]
 84%|████████▎ | 1671/2001 [00:59<00:11, 28.21it/s]
 84%|████████▎ | 1674/2001 [00:59<00:11, 28.17it/s]
 84%|████████▍ | 1677/2001 [00:59<00:11, 28.16it/s]
 84%|████████▍ | 1680/2001 [00:59<00:11, 28.08it/s]
 84%|████████▍ | 1683/2001 [00:59<00:11, 28.09it/s]
 84%|████████▍ | 1686/2001 [01:00<00:11, 28.18it/s]
 84%|████████▍ | 1689/2001 [01:00<00:11, 28.17it/s]
 85%|████████▍ | 1692/2001 [01:00<00:10, 28.17it/s]
 85%|████████▍ | 1695/2001 [01:00<00:10, 28.25it/s]
 85%|████████▍ | 1698/2001 [01:00<00:10, 28.20it/s]
 85%|████████▌ | 1701/2001 [01:00<00:10, 28.18it/s]
 85%|████████▌ | 1704/2001 [01:00<00:10, 28.04it/s]
 85%|████████▌ | 1707/2001 [01:00<00:10, 27.99it/s]
 85%|████████▌ | 1710/2001 [01:00<00:10, 27.98it/s]
 86%|████████▌ | 1713/2001 [01:01<00:10, 27.84it/s]
 86%|████████▌ | 1716/2001 [01:01<00:10, 27.76it/s]
 86%|████████▌ | 1719/2001 [01:01<00:10, 27.92it/s]
 86%|████████▌ | 1722/2001 [01:01<00:09, 28.07it/s]
 86%|████████▌ | 1725/2001 [01:01<00:09, 28.12it/s]
 86%|████████▋ | 1728/2001 [01:01<00:09, 28.06it/s]
 87%|████████▋ | 1731/2001 [01:01<00:09, 28.01it/s]
 87%|████████▋ | 1734/2001 [01:01<00:09, 27.98it/s]
 87%|████████▋ | 1737/2001 [01:01<00:09, 28.02it/s]
 87%|████████▋ | 1740/2001 [01:02<00:09, 28.12it/s]
 87%|████████▋ | 1743/2001 [01:02<00:09, 28.12it/s]
 87%|████████▋ | 1746/2001 [01:02<00:09, 28.24it/s]
 87%|████████▋ | 1749/2001 [01:02<00:08, 28.23it/s]
 88%|████████▊ | 1752/2001 [01:02<00:08, 28.25it/s]
 88%|████████▊ | 1755/2001 [01:02<00:08, 28.26it/s]
 88%|████████▊ | 1758/2001 [01:02<00:08, 28.28it/s]
 88%|████████▊ | 1761/2001 [01:02<00:08, 28.16it/s]
 88%|████████▊ | 1764/2001 [01:02<00:08, 28.12it/s]
 88%|████████▊ | 1767/2001 [01:02<00:08, 28.10it/s]
 88%|████████▊ | 1770/2001 [01:03<00:08, 28.08it/s]
 89%|████████▊ | 1773/2001 [01:03<00:08, 27.92it/s]
 89%|████████▉ | 1776/2001 [01:03<00:08, 28.00it/s]
 89%|████████▉ | 1779/2001 [01:03<00:07, 28.11it/s]
 89%|████████▉ | 1782/2001 [01:03<00:07, 28.15it/s]
 89%|████████▉ | 1785/2001 [01:03<00:07, 28.20it/s]
 89%|████████▉ | 1788/2001 [01:03<00:07, 28.20it/s]
 90%|████████▉ | 1791/2001 [01:03<00:07, 28.30it/s]
 90%|████████▉ | 1794/2001 [01:03<00:07, 28.26it/s]
 90%|████████▉ | 1797/2001 [01:04<00:07, 28.30it/s]
 90%|████████▉ | 1800/2001 [01:04<00:07, 28.22it/s]
 90%|█████████ | 1803/2001 [01:04<00:07, 28.28it/s]
 90%|█████████ | 1806/2001 [01:04<00:06, 28.38it/s]
 90%|█████████ | 1809/2001 [01:04<00:06, 28.31it/s]
 91%|█████████ | 1812/2001 [01:04<00:06, 28.25it/s]
 91%|█████████ | 1815/2001 [01:04<00:06, 28.22it/s]
 91%|█████████ | 1818/2001 [01:04<00:06, 28.20it/s]
 91%|█████████ | 1821/2001 [01:04<00:06, 28.16it/s]
 91%|█████████ | 1824/2001 [01:04<00:06, 28.21it/s]
 91%|█████████▏| 1827/2001 [01:05<00:06, 28.14it/s]
 91%|█████████▏| 1830/2001 [01:05<00:06, 28.11it/s]
 92%|█████████▏| 1833/2001 [01:05<00:05, 28.19it/s]
 92%|█████████▏| 1836/2001 [01:05<00:05, 28.29it/s]
 92%|█████████▏| 1839/2001 [01:05<00:05, 28.46it/s]
 92%|█████████▏| 1842/2001 [01:05<00:05, 28.47it/s]
 92%|█████████▏| 1845/2001 [01:05<00:05, 28.38it/s]
 92%|█████████▏| 1848/2001 [01:05<00:05, 28.43it/s]
 93%|█████████▎| 1851/2001 [01:05<00:05, 28.29it/s]
 93%|█████████▎| 1854/2001 [01:06<00:05, 28.32it/s]
 93%|█████████▎| 1857/2001 [01:06<00:05, 28.22it/s]
 93%|█████████▎| 1860/2001 [01:06<00:04, 28.29it/s]
 93%|█████████▎| 1863/2001 [01:06<00:04, 28.26it/s]
 93%|█████████▎| 1866/2001 [01:06<00:04, 28.22it/s]
 93%|█████████▎| 1869/2001 [01:06<00:04, 28.20it/s]
 94%|█████████▎| 1872/2001 [01:06<00:04, 28.26it/s]
 94%|█████████▎| 1875/2001 [01:06<00:04, 28.15it/s]
 94%|█████████▍| 1878/2001 [01:06<00:04, 28.12it/s]
 94%|█████████▍| 1881/2001 [01:07<00:04, 28.12it/s]
 94%|█████████▍| 1884/2001 [01:07<00:04, 28.08it/s]
 94%|█████████▍| 1887/2001 [01:07<00:04, 28.06it/s]
 94%|█████████▍| 1890/2001 [01:07<00:03, 28.07it/s]
 95%|█████████▍| 1893/2001 [01:07<00:03, 28.20it/s]
 95%|█████████▍| 1896/2001 [01:07<00:03, 28.15it/s]
 95%|█████████▍| 1899/2001 [01:07<00:03, 28.11it/s]
 95%|█████████▌| 1902/2001 [01:07<00:03, 28.15it/s]
 95%|█████████▌| 1905/2001 [01:07<00:03, 28.17it/s]
 95%|█████████▌| 1908/2001 [01:07<00:03, 28.23it/s]
 96%|█████████▌| 1911/2001 [01:08<00:03, 28.26it/s]
 96%|█████████▌| 1914/2001 [01:08<00:03, 28.21it/s]
 96%|█████████▌| 1917/2001 [01:08<00:02, 28.24it/s]
 96%|█████████▌| 1920/2001 [01:08<00:02, 28.34it/s]
 96%|█████████▌| 1923/2001 [01:08<00:02, 28.32it/s]
 96%|█████████▋| 1926/2001 [01:08<00:02, 28.25it/s]
 96%|█████████▋| 1929/2001 [01:08<00:02, 28.24it/s]
 97%|█████████▋| 1932/2001 [01:08<00:02, 28.23it/s]
 97%|█████████▋| 1935/2001 [01:08<00:02, 28.07it/s]
 97%|█████████▋| 1938/2001 [01:09<00:02, 28.00it/s]
 97%|█████████▋| 1941/2001 [01:09<00:02, 27.87it/s]
 97%|█████████▋| 1944/2001 [01:09<00:02, 27.95it/s]
 97%|█████████▋| 1947/2001 [01:09<00:01, 28.01it/s]
 97%|█████████▋| 1950/2001 [01:09<00:01, 27.90it/s]
 98%|█████████▊| 1953/2001 [01:09<00:01, 27.97it/s]
 98%|█████████▊| 1956/2001 [01:09<00:01, 28.07it/s]
 98%|█████████▊| 1959/2001 [01:09<00:01, 28.06it/s]
 98%|█████████▊| 1962/2001 [01:09<00:01, 28.17it/s]
 98%|█████████▊| 1965/2001 [01:09<00:01, 28.12it/s]
 98%|█████████▊| 1968/2001 [01:10<00:01, 28.18it/s]
 99%|█████████▊| 1971/2001 [01:10<00:01, 28.17it/s]
 99%|█████████▊| 1974/2001 [01:10<00:00, 28.09it/s]
 99%|█████████▉| 1977/2001 [01:10<00:00, 28.13it/s]
 99%|█████████▉| 1980/2001 [01:10<00:00, 28.02it/s]
 99%|█████████▉| 1983/2001 [01:10<00:00, 28.13it/s]
 99%|█████████▉| 1986/2001 [01:10<00:00, 28.18it/s]
 99%|█████████▉| 1989/2001 [01:10<00:00, 28.07it/s]
100%|█████████▉| 1992/2001 [01:10<00:00, 28.03it/s]
100%|█████████▉| 1995/2001 [01:11<00:00, 28.04it/s]
100%|█████████▉| 1998/2001 [01:11<00:00, 27.91it/s]
100%|██████████| 2001/2001 [01:11<00:00, 28.04it/s]
100%|██████████| 2001/2001 [01:11<00:00, 28.08it/s]

<maicos.modules.pdfplanar.PDFPlanar object at 0x7fad7be05ca0>

We also calculate the density profile of the water molecules in order to
compare the different slabs with the layering visible in the density.

dana_obj = maicos.DensityPlanar(
 water, dim=2, refgroup=water, bin_width=0.1, sym=True, zmin=-7, zmax=7
)

dana_obj.run(step=10)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will be set to `False`.

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad7be354c0>

The results of the analysis are stored in the results member variable.
As per the documentation of PDFPlanar, we get three different arrays:
bin_pos, bins, and pdf.
Here, bin_pos is the position of the center of the slices in the
z-direction, bins contains the bin positions of the pair distribution,
which are shared by all slices and correspondingly pdf contains each
profile that our code produced.

In the following, we loop over all the pdf slices and plot each of them.
Furthermore, in a separate subplot, we also show the density profile of the
water molecules and highlight the slices that each pdf is calculated for.
Hence, the same color in both plots corresponds to the same slice for the
pair distribution function and the density profile.
%%

u per cubic angstrom to kg per cubic meter factor
u2kg = 1660.5390665999998

fig, ax = plt.subplots(1, 2)
print(ax)

tax = ax[1].twinx()
shift = 0
shift_amount = 2
for i in range(0, len(ana_obj.results.pdf[0])):
 bin_pos = ana_obj.results.bin_pos[i]

 pdf_prof = ana_obj.results.pdf[:, i]
 mean_bulk = np.mean(pdf_prof[ana_obj.results.bins > 10])

 line = ax[0].plot(
 ana_obj.results.bins, ana_obj.results.pdf[:, i] / mean_bulk + shift
)
 tax.vlines(
 7 + bin_pos, 0, 3500, alpha=0.7, color=line[0].get_color(), linestyles="dashed"
)

 tax.axvspan(
 7 + bin_pos - 0.25 * 2,
 7 + bin_pos + 0.25 * 2,
 color=line[0].get_color(),
 alpha=0.3,
)
 shift += shift_amount

ax[0].set_ylabel(r"$g(r)$")
ax[0].set_xlabel(r"r [\AA]")
ax[0].set_xlim((0, 15))
ax[0].hlines(1, 0, 15, color="black", linestyles="dashed", alpha=0.5)

tax.plot(
 7 + dana_obj.results.bin_pos,
 dana_obj.results.profile * u2kg,
 color="black",
 label="Density",
)
tax.set_xlim((1, 7))

ax[1].set_yticks(tax.get_yticks())

ax[1].set_yticklabels([])

tax.set_ylabel(r"$\rho(z)$ [kg/m3]")
ax[1].set_xlabel(r"z [\AA]")

Set the padding between the axis to zero
plt.tight_layout()

fig.subplots_adjust(wspace=0, hspace=0)
fig.dpi = 200

[image: pair distribution functions][<Axes: > <Axes: >]

Total running time of the script: (1 minutes 12.400 seconds)

Download Jupyter notebook: pair-distribution-functions.ipynb

Download Python source code: pair-distribution-functions.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Go to the end
to download the full example code

Calculating and interpreting dipolar pair correlation functions

In this examples we will calculate dipolar pair correlation functions in real and
Fourier space using the maicos modules maicos.RDFDiporder and
maicos.DiporderStructureFactor. We will show how these pair correlation
functions are connected to each other and electrostatic properties like the dielectric
constant \(\varepsilon\) and the Kirkwood factor \(g_K\).

We start by importing the necessarary modules

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np
import scipy
from MDAnalysis.analysis.dielectric import DielectricConstant

import maicos
from maicos.lib.math import compute_rdf_structure_factor

Our example system is \(N=512\) rigid SPC/E water molecules simulated in an NVT
ensemble at \(300\,\mathrm{K}\) in a cubic cell of \(L=24.635\,Å\). To follow
this how-to guide, you should download the topology and
the trajectory files of the system. Below we load the
system, report and store some system properties for later usage.

u = mda.Universe("water_nvt.tpr", "water_nvt.xtc")

volume = u.trajectory.ts.volume
density = u.residues.n_residues / volume
dipole_moment = u.atoms.dipole_moment(compound="residues", unwrap=True).mean()

print(f"ρ_n = {density:.3f} Å^-3")
print(f"µ = {dipole_moment:.2f} eÅ")

ρ_n = 0.034 Å^-3
µ = 0.49 eÅ

The results of our first property calculations show that the number density as well as
the dipole moment of a single water molecule is consistent with the literature
[1].

Static dielectric constant

To start with the analysis we first look at the dielectric constant of the system. If
you run a simulation using an Ewald simulation technique as usually done, the
dielectric constant for such system with metallic boundary conditions is given
according to Neumann[2] by

\[\varepsilon = 1 + \frac{\langle M^2 \rangle_\mathrm{MBE} - \langle
M \rangle_\mathrm{MBE}^2}{3 \varepsilon_0 V k_B T}\]

where

\[\boldsymbol M = \sum_{i=1}^N \boldsymbol \mu_i\]

is the total dipole moment of the box, \(V\) its volume and \(\varepsilon_0\)
the vacuum permittivity. We use the subscript in the expectation value
\(\mathrm{MBE}\) indicating that the equation only holds for simulations with
Metallic Boundary conditions in an Ewald simulation style. As shown
in the equation for \(\varepsilon(\mathrm{MBE})\) the dielectric constant here is
a total cell quantity connecting the fluctuations of the total dipole moment to the
dielectric constant. We can calculate \(\varepsilon_\mathrm{MBE}\) using the
MDAnalysis.analysis.dielectric.DielectricConstant [https://docs.mdanalysis.org/stable/documentation_pages/analysis/dielectric.html#MDAnalysis.analysis.dielectric.DielectricConstant] module of MDAnalysis.

epsilon_mbe = DielectricConstant(atomgroup=u.atoms).run()
print(f"ɛ_MBE = {epsilon_mbe.results.eps_mean:.2f}")

ɛ_MBE = 69.21

The value of 70 is the same as reported in the literature for the
rigid SPC/E water model [1].

Kirkwood factor

Knowing the dielectric constant we can also calculate the Kirkwood factor \(g_K\)
which is a measure describing molecular correlations. I.e a Kirkwood factor greater
than 1 indicates that neighboring molecular dipoles are more likely to align in the
same direction, enhancing the material’s polarization and, consequently, its
dielectric constant. Based on the dielectric constant \(\varepsilon\) Kirkwood and
Fröhlich derived the relation for the factor \(g_K\) according to

\[\frac{ N \mu^2 g_K}{\varepsilon_0 V k_B T} = \frac{(\varepsilon -
1)(2\varepsilon + 1)}{\varepsilon}\]

This relation is valid for a sample in an infinity, homogenous medium of the same
dielectric constant. Below we implement this equation and calculate the factor for our
system.

def kirkwood_factor_KF(
 dielectric_constant: float,
 volume: float,
 n_dipoles: float,
 molecular_dipole_moment: float,
 temperature: float = 300,
) -> float:
 """Kirkwood factor in the Kirkwood-Fröhlich way.

 For the sample in an infinity, homogenous medium of the same dielectric constant.

 Parameters

 dielectric_constant : float
 the static dielectric constant ɛ
 volume : float
 system volume in Å^3
 n_dipoles : float
 number of dipoles
 molecular_dipole_moment : float
 dipole moment of a molecule (eÅ)
 temperature : float
 temperature of the simulation K
 """
 dipole_moment_sq = (
 molecular_dipole_moment
 * scipy.constants.elementary_charge
 * scipy.constants.angstrom
) ** 2
 factor = (
 scipy.constants.epsilon_0
 * (volume * scipy.constants.angstrom**3)
 * scipy.constants.Boltzmann
 * temperature
)

 return (
 factor
 / (dielectric_constant * n_dipoles * dipole_moment_sq)
 * (dielectric_constant - 1)
 * (2 * dielectric_constant + 1)
)

kirkwood_KF = kirkwood_factor_KF(
 dielectric_constant=epsilon_mbe.results.eps_mean,
 volume=volume,
 n_dipoles=u.residues.n_residues,
 molecular_dipole_moment=dipole_moment,
)

print(f"g_K = {kirkwood_KF:.2f}")

g_K = 2.39

This value means there is a quite strong correlation between neighboring water
molecules. The dielectric constant \(\varepsilon\) is a material property and does
not depend on the boundary condition. Instead, the Kirkwood factor is indicative of
dipole-dipole correlations which instead depend on the boundary condistions in the
simulation. This relation is described and shown below.

Connecting the Kirkwood factor to real space dipolar pair-correlation functions

The \(r\)-dependent Kirkwood factor can also be calculated from real space
dipole-dipole pair correlation function [3]

\[g_\mathrm{\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\mu}}}(r) = \frac{1}{N}
\left\langle \sum_i \frac{1}{n_i(r)} \sum_{j=1}^{n_i(r)} (\hat{\boldsymbol{\mu}}_i
\cdot \hat{\boldsymbol{\mu}}_j) \right \rangle\]

where \(\hat{\boldsymbol{\mu}}\) is the normalized dipole moment and
\(n_i(r)\) is the number of dipoles within a spherical shell of distance \(r\)
and \(r + \delta r\) from dipole \(i\). We compute the pair correlation
function using the maicos.RDFDiporder module up to half of the length of
cubic simulation box. We drop a delta like contribution in \(r=0\) caused by
interaction of the dipole with itself.

L_half = u.dimensions[:3].max() / 2

rdf_diporder = maicos.RDFDiporder(g1=u.atoms, rmax=L_half, bin_width=0.01)
rdf_diporder.run()

<maicos.modules.rdfdiporder.RDFDiporder object at 0x7fad78d82fa0>

Based on this correlation function we can calculate the radially resolved Kirkwood
factor via [4]

\[G_K(r) = \rho_n 4 \pi \int_0^r \mathrm{d}r^\prime {r^\prime}^2
g_\mathrm{\hat \mu, \hat \mu}(r^\prime) + 1\]

where the “\(+ 1\)” accounts for the integration of the delta function at
\(r=0\). Here \(\rho_n = N/V\) is the density of dipoles.

radial_kirkwood = 1 + (
 density
 * 4
 * np.pi
 * scipy.integrate.cumulative_trapezoid(
 x=rdf_diporder.results.bins,
 y=rdf_diporder.results.bins**2 * rdf_diporder.results.rdf,
 initial=0,
)
)

While, for a truly infinite system, the \(r\)- dependent Kirkwood factor,
\(G_\mathrm{K}(r)\) is short range [5]
[4], the boundary conditions on a finite system
introduce long-range effects. In particular, within MBE,
Caillol[6] has shown that \(G_\mathrm{K}(r)\) has a
spurious asymptotic growth proportional to \(r^3/V\). This effect is stil present
at \(r=r_K\), where \(r_K\) (here approximately 6 Å) indicates a distance
after which all the physical features of
\(g_\mathrm{\hat{\boldsymbol{\mu}},\hat{\boldsymbol{\mu}}}(r)\) are extinct. For
more details see the original literature. Below we show the pair correlation function
as well as the radial and the (static) Kirkwood factor as gray dashed line.

fig, ax = plt.subplots(2)

ax[0].plot(
 rdf_diporder.results.bins,
 rdf_diporder.results.rdf,
)
ax[1].axhline(kirkwood_KF, ls="--", c="gray", label="g_K (KF)")

ax[1].plot(rdf_diporder.results.bins, radial_kirkwood)

ax[0].set(
 xlim=(2, 6),
 ylim=(-0.2, 1.5),
 ylabel=r"$g_\mathrm{\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\mu}}}(r)$",
)

ax[1].set(
 xlim=(2, 10),
 ylim=(0.95, 3.9),
 xlabel=r"$r\,/\,\mathrm{Å}$",
 ylabel=r"$G_K(r)$",
)

ax[1].legend()

fig.align_labels()
fig.tight_layout()

[image: dipole correlations]Notice that the Kirkwood Fröhlich estimator for the Kirkwood factors differs from the
value of \(G_K(r=r_K)\) obtained from simulations in the MBE ensemble.

Dipole Structure factor

An alternative approach to calculate the dielectric constant is via the dipole
structure factor which is given by

\[S(q)_{\hat{\boldsymbol{\mu}} \hat{\boldsymbol{\mu}}} = \left \langle
\frac{1}{N} \sum_{i,j=1}^N \hat \mu_i \hat \mu_j \, \exp(-i\boldsymbol q\cdot
[\boldsymbol r_i - \boldsymbol r_j]) \right \rangle\]

We compute the structure factor using the maicos.DiporderStructureFactor
module.

diporder_structure_factors = maicos.DiporderStructureFactor(atomgroup=u.atoms, dq=0.05)
diporder_structure_factors.run()

<maicos.modules.diporderstructurefactor.DiporderStructureFactor object at 0x7fad78f6e2b0>

As also shown how to on SAXS calculations the structure factor can
also be obtained directly from the real space correlation functions using Fourier
transformation via

\[S_{\hat{\boldsymbol{\mu}} \hat{\boldsymbol{\mu}}}^\mathrm{FT}(q) = 1 + 4 \pi
\rho \int_0^\infty \mathrm{d}r r \frac{\sin(qr)}{q} g_{\hat \mu\hat \mu}(r)\,,\]

which can be obtained by the function
maicos.lib.math.compute_rdf_structure_factor(). We have assumed an isotropic
system so that \(S(\boldsymbol q) = S(q)\). Note that we added a one to the dipole
pair correlation function due to the implementation of the Fourier transformation
inside maicos.lib.math.compute_rdf_structure_factor().

q_rdf, struct_fac_rdf = compute_rdf_structure_factor(
 rdf=1 + rdf_diporder.results.rdf, r=rdf_diporder.results.bins, density=density
)

Before we plot the structure factors we first also fit the low \(q\) limit
according to a quadratic function as

\[S_\mathrm{\hat \mu\hat \mu}(q\rightarrow0) \approx S_0 + S_2q^2\]

The fit contains no linear term because of the structure factors’ symmetry around 0.

n_max = 5 # take `n_max` first data points of the structure factor for the fit

q_max is the maximal q value corresponding to the last point taken for the fit
q_max = diporder_structure_factors.results.scattering_vectors[n_max]
print(f"q_max = {q_max:.2f} Å")

eps_fit = np.polynomial.Polynomial.fit(
 x=diporder_structure_factors.results.scattering_vectors[:n_max],
 y=diporder_structure_factors.results.structure_factors[:n_max],
 deg=(0, 2),
 domain=(-q_max, q_max),
)

print(
 f"Best fit parameters: S_0 = {eps_fit.coef[0]:.2f}, S_2 = {eps_fit.coef[2]:.2f} Å^2"
)

q_max = 0.63 Å
Best fit parameters: S_0 = 2.45, S_2 = -0.84 Å^2

Now we can finally plot the structure factor

plt.plot(
 diporder_structure_factors.results.scattering_vectors,
 diporder_structure_factors.results.structure_factors,
 label=r"$S_{\hat \mu\hat \mu}$",
)
plt.plot(
 q_rdf, struct_fac_rdf, ls="dashed", label=r"$S_{\hat \mu\hat \mu}^\mathrm{FT}$"
)
plt.plot(*eps_fit.linspace(50), ls="dotted", label=r"$S_0 + S_2 q^2$")

plt.axhline(1, ls=":", c="gray")
plt.ylabel(r"$S_\mathrm{\hat\mu \hat\mu}(q)$")
plt.xlabel(r"q / $Å^{-1}$")
plt.tight_layout()
plt.xlim(0, 5)
plt.legend()
plt.show()

[image: dipole correlations]You see that the orange and the blue curve agree. We also add the fit as a green
dotted line. From \(S_0\) we can extract the dielectric constant via
[7]

\[\frac{\mu^2}{\varepsilon_0} S_0 =
\frac{(\varepsilon - 1)(2 \varepsilon + 1)}{\varepsilon}\]

This formula can be inverted and an estimator for \(\varepsilon_S\) can be
obtained as we show below.

def dielectric_constant_struc_fact(S_0: float, molecular_dipole_moment: float) -> float:
 """The dielectric constant calculated from the q->0 limit of the structure factor.

 Parameters

 q_0_limit : float
 the q -> 0 limit if the dipololar structure factor
 molecular_dipole_moment : float
 dipole moment of a molecule (eÅ)
 """
 dipole_moment_sq = (
 molecular_dipole_moment
 * scipy.constants.angstrom
 * scipy.constants.elementary_charge
) ** 2

 S_limit = (
 dipole_moment_sq
 * S_0
 / scipy.constants.epsilon_0
 / scipy.constants.elementary_charge
 / scipy.constants.angstrom**3
)

 return (np.sqrt((S_limit) ** 2 + 2 * S_limit + 9) + S_limit + 1) / 4

epsilon_struct_fac = dielectric_constant_struc_fact(
 S_0=eps_fit.coef[0], molecular_dipole_moment=dipole_moment
)
print(f"ɛ_S = {epsilon_struct_fac:.2f}")

ɛ_S = 53.53

Which is quite close the value calculated directly from the total dipole fluctuations
of the simulations \(\varepsilon_\mathrm{MBE}\approx69\). This difference may
result in the very crude fit that is performed and it could be drastically improved by
a Bayesian fitting method as for example for fitting the Seebeck coefficient from a
similar structure factor [8].

References

[1]
(1,2)
Carlos Vega and Jose L. F. Abascal. Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys., 13(44):19663–19688, November 2011. doi:10.1039/C1CP22168J [https://doi.org/10.1039/C1CP22168J].

[2]
Martin Neumann. Dipole moment fluctuation formulas in computer simulations of polar systems. Molecular Physics, 50(4):841–858, November 1983. doi:10.1080/00268978300102721 [https://doi.org/10.1080/00268978300102721].

[3]
Cui Zhang and Giulia Galli. Dipolar correlations in liquid water. The Journal of Chemical Physics, 141(8):084504, August 2014. doi:10.1063/1.4893638 [https://doi.org/10.1063/1.4893638].

[4]
(1,2)
Chao Zhang, Jürg Hutter, and Michiel Sprik. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water. J. Phys. Chem. Lett., 7(14):2696–2701, July 2016. doi:10.1021/acs.jpclett.6b01127 [https://doi.org/10.1021/acs.jpclett.6b01127].

[5]
H. Fröhlich. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Monographs on the Physics and Chemistry of Materials. Oxford University Press, 2 edition, 1958.

[6]
J. M. Caillol. Asymptotic behavior of the pair-correlation function of a polar liquid. The Journal of Chemical Physics, 96(9):7039–7053, May 1992. doi:10.1063/1.462536 [https://doi.org/10.1063/1.462536].

[7]
Jean-Pierre Hansen and Ian. R. McDonald. Theory of Simple Liquids. Elsevier / Academic Press, 3rd ed edition, 2006. ISBN 9780080455075.

[8]
Enrico Drigo and Stefano Baroni. Seebeck Coefficient of Liquid Water from Equilibrium Molecular Dynamics. J. Chem. Theory Comput., 19(23):8855–8860, December 2023. doi:10.1021/acs.jctc.3c00760 [https://doi.org/10.1021/acs.jctc.3c00760].

Total running time of the script: (2 minutes 2.492 seconds)

Download Jupyter notebook: dipole-correlations.ipynb

Download Python source code: dipole-correlations.py

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Reference guides

The reference guides contain details for all the analysis modules. The API documentation
gives details on how the calculators and additional functions can be used from each
language.

	Analysis Modules

	API Documentation

Analysis Modules

This is a list of all analysis modules provided by MAICoS. Note that we do not have an
example section for each module. Instead, we refer to our tutorial
and How-to guides. Once you understand the basic structure taught there, you can
work with all modules. If not, feel free to raise an issue in Gitlab [https://gitlab.com/maicos-devel/maicos/-/issues] or ask us on
Discord [https://discord.gg/mnrEQWVAed].

	DensityCylinder

	DensityPlanar

	DensitySphere

	DielectricCylinder

	DielectricPlanar

	DielectricSpectrum

	DielectricSphere

	DipoleAngle

	DiporderCylinder

	DiporderPlanar

	DiporderSphere

	DiporderStructureFactor

	KineticEnergy

	PDFCylinder

	PDFPlanar

	RDFDiporder

	Saxs

	TemperaturePlanar

	VelocityCylinder

	VelocityPlanar

DensityCylinder

	
class maicos.DensityCylinder(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dens: str [https://docs.python.org/3/library/stdtypes.html#str] = 'mass', dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'density.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfileCylinderBase

Cylindrical partial density profiles.

Calculations are carried out for
mass \((\rm u \cdot Å^{-3})\), number \((\rm Å^{-3})\) or charge
\((\rm e \cdot Å^{-3})\) density profiles along certain cartesian axes [x, y,
z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding
centers (i.e., center of mass), taking into account periodic boundary conditions,
are calculated. For these calculations molecules will be unwrapped/made whole.
Trajectories containing already whole molecules can be run with unwrap=False to
gain a speedup. For grouping with respect to atoms, the unwrap option is always
ignored.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	dens ({"mass", "number", "charge"}) – density type to be calculated.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

DensityPlanar

	
class maicos.DensityPlanar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dens: str [https://docs.python.org/3/library/stdtypes.html#str] = 'mass', dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, sym: bool [https://docs.python.org/3/library/functions.html#bool] = False, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'density.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfilePlanarBase

Cartesian partial density profiles.

Calculations are carried out for
mass \((\rm u \cdot Å^{-3})\), number \((\rm Å^{-3})\) or charge
\((\rm e \cdot Å^{-3})\) density profiles along certain cartesian axes [x, y,
z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding
centers (i.e., center of mass), taking into account periodic boundary conditions,
are calculated. For these calculations molecules will be unwrapped/made whole.
Trajectories containing already whole molecules can be run with unwrap=False to
gain a speedup. For grouping with respect to atoms, the unwrap option is always
ignored.

For the correlation analysis the central bin
(\(N \backslash 2\)) of the 0th’s group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	dens ({"mass", "number", "charge"}) – density type to be calculated.

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Notes

Partial mass density profiles can be used to calculate the ideal component of the
chemical potential. For details, take a look at the corresponding How-to
guide.

DensitySphere

	
class maicos.DensitySphere(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dens: str [https://docs.python.org/3/library/stdtypes.html#str] = 'mass', bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'density.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfileSphereBase

Spherical partial density profiles.

Calculations are carried out for
mass \((\rm u \cdot Å^{-3})\), number \((\rm Å^{-3})\) or charge
\((\rm e \cdot Å^{-3})\) density profiles along certain cartesian axes [x, y,
z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding
centers (i.e., center of mass), taking into account periodic boundary conditions,
are calculated. For these calculations molecules will be unwrapped/made whole.
Trajectories containing already whole molecules can be run with unwrap=False to
gain a speedup. For grouping with respect to atoms, the unwrap option is always
ignored.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	dens ({"mass", "number", "charge"}) – density type to be calculated.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

DielectricCylinder

	
class maicos.DielectricCylinder(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], bin_width: float [https://docs.python.org/3/library/functions.html#float] = 0.1, temperature: float [https://docs.python.org/3/library/functions.html#float] = 300, single: bool [https://docs.python.org/3/library/functions.html#bool] = False, output_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = 'eps_cyl', refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, dim: int [https://docs.python.org/3/library/functions.html#int] = 2, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, vcutwidth: float [https://docs.python.org/3/library/functions.html#float] = 0.1, unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: CylinderBase

Cylindrical dielectric profiles.

Components are calculated along the axial (\(z\)) and radial (\(r\))
direction either with respect to the center of the simulation box or the center of
mass of the refgroup, if provided. The axial direction is selected using the dim
parameter.

For correlation analysis, the component along the \(z\) axis is used.
For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

For usage please refer to How-to: Dielectric constant and
for details on the theory see Dielectric constant measurement.

Also, please read and cite [1].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Reference temperature (K)

	single (bool [https://docs.python.org/3/library/functions.html#bool]) – For a single chain of molecules the average of M is zero. This flag sets
<M> = 0.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_z

	Reduced axial dielectric profile \((\varepsilon_z - 1)\) of the
selected atomgroup

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.deps_z

	Estimated uncertainty of axial dielectric profile

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_r

	Reduced inverse radial dielectric profile
\((\varepsilon^{-1}_r - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.deps_r

	Estimated uncertainty of inverse radial dielectric profile

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Philip Loche, Cihan Ayaz, Alexander Schlaich, Yuki Uematsu, and Roland R. Netz. Giant Axial Dielectric Response in Water-Filled Nanotubes and Effective Electrostatic Ion–Ion Interactions from a Tensorial Dielectric Model. J. Phys. Chem. B, 123(50):10850–10857, December 2019. doi:10.1021/acs.jpcb.9b09269 [https://doi.org/10.1021/acs.jpcb.9b09269].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

DielectricPlanar

	
class maicos.DielectricPlanar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 0.5, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, is_3d: bool [https://docs.python.org/3/library/functions.html#bool] = False, sym: bool [https://docs.python.org/3/library/functions.html#bool] = False, unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, temperature: float [https://docs.python.org/3/library/functions.html#float] = 300, output_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = 'eps', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, vcutwidth: float [https://docs.python.org/3/library/functions.html#float] = 0.1)

	Bases: PlanarBase

Planar dielectric profiles.

For usage please refer to How-to: Dielectric constant and
for details on the theory see Dielectric constant measurement.

For correlation analysis, the norm of the parallel total dipole moment is used.
For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

Also, please read and cite
Schlaich et al.[1] and Refs.
[2],
[3].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	is_3d (bool [https://docs.python.org/3/library/functions.html#bool]) – Use 3d-periodic boundary conditions, i.e., include the dipole correction for
the interaction between periodic images
[4].

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Reference temperature (K)

	output_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for output files.

	vcutwidth (float [https://docs.python.org/3/library/functions.html#float]) – Spacing of virtual cuts (bins) along the parallel directions.

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_par

	Reduced parallel dielectric profile
\((\varepsilon_\parallel - 1)\) of the selected AtomGroup

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.deps_par

	Uncertainty of parallel dielectric profile

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_par_self

	Reduced self contribution of parallel dielectric profile
\((\varepsilon_{\parallel,\mathrm{self}} - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_par_coll

	Reduced collective contribution of parallel dielectric profile
\((\varepsilon_{\parallel,\mathrm{coll}} - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_perp

	Reduced inverse perpendicular dielectric profile
\((\varepsilon^{-1}_\perp - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.deps_perp

	Uncertainty of inverse perpendicular dielectric profile

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_perp_self

	Reduced self contribution of the inverse perpendicular dielectric
profile \((\varepsilon^{-1}_{\perp,\mathrm{self}} - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_perp_coll

	Reduced collective contribution of the inverse perpendicular dielectric profile
\((\varepsilon^{-1}_{\perp,\mathrm{coll}} - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Alexander Schlaich, Ernst W. Knapp, and Roland R. Netz. Water Dielectric Effects in Planar Confinement. Phys. Rev. Lett., 117(4):048001, July 2016. doi:10.1103/PhysRevLett.117.048001 [https://doi.org/10.1103/PhysRevLett.117.048001].

[2]
Philip Loche, Cihan Ayaz, Amanuel Wolde-Kidan, Alexander Schlaich, and Roland R. Netz. Universal and Nonuniversal Aspects of Electrostatics in Aqueous Nanoconfinement. J. Phys. Chem. B, 124(21):4365–4371, May 2020. doi:10.1021/acs.jpcb.0c01967 [https://doi.org/10.1021/acs.jpcb.0c01967].

[3]
Douwe Jan Bonthuis, Stephan Gekle, and Roland R. Netz. Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for Capacitance, Hydration Interaction and Ion Adsorption. Langmuir, 28(20):7679–7694, 2012. doi:10.1021/la2051564 [https://doi.org/10.1021/la2051564].

[4]
Harry A. Stern and Scott E. Feller. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation. The Journal of Chemical Physics, 118(7):3401–3412, February 2003. doi:10.1063/1.1537244 [https://doi.org/10.1063/1.1537244].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

DielectricSpectrum

	
class maicos.DielectricSpectrum(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, temperature: float [https://docs.python.org/3/library/functions.html#float] = 300, output_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '', segs: int [https://docs.python.org/3/library/functions.html#int] = 20, df: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bins: int [https://docs.python.org/3/library/functions.html#int] = 200, binafter: float [https://docs.python.org/3/library/functions.html#float] = 20, nobin: bool [https://docs.python.org/3/library/functions.html#bool] = False, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: AnalysisBase

Linear dielectric spectrum.

This module, given a molecular dynamics trajectory, produces a .txt file
containing the complex dielectric function as a function of the (linear, not radial
- i.e., \(\nu\) or \(f\), rather than \(\omega\)) frequency, along with
the associated standard deviations. The algorithm is based on the Fluctuation
Dissipation Relation: \(\chi(f) = -1/(3 V k_B T \varepsilon_0)
\mathcal{L}[\theta(t) \langle P(0) dP(t)/dt\rangle]\), where \(\mathcal{L}\) is
the Laplace transformation.

Note

The polarization time series and the average system volume are also saved.

Please read and cite [1].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Reference temperature (K)

	output_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for output files.

	segs (int [https://docs.python.org/3/library/functions.html#int]) – Sets the number of segments the trajectory is broken into.

	df (float [https://docs.python.org/3/library/functions.html#float]) – The desired frequency spacing in THz. This determines the minimum frequency
about which there is data. Overrides segs option.

	bins (int [https://docs.python.org/3/library/functions.html#int]) – Determines the number of bins used for data averaging; (this parameter sets the
upper limit). The data are by default binned logarithmically. This helps to
reduce noise, particularly in the high-frequency domain, and also prevents plot
files from being too large.

	binafter (int [https://docs.python.org/3/library/functions.html#int]) – The number of low-frequency data points that are left unbinned.

	nobin (bool [https://docs.python.org/3/library/functions.html#bool]) – Prevents the data from being binned altogether. This can result in very large
plot files and errors.

	
results

	

References

[1]
Shane Carlson, Florian N. Brünig, Philip Loche, Douwe Jan Bonthuis, and Roland R. Netz. Exploring the Absorption Spectrum of Simulated Water from MHz to Infrared. J. Phys. Chem. A, 124(27):5599–5605, July 2020. doi:10.1021/acs.jpca.0c04063 [https://doi.org/10.1021/acs.jpca.0c04063].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

DielectricSphere

	
class maicos.DielectricSphere(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], bin_width: float [https://docs.python.org/3/library/functions.html#float] = 0.1, temperature: float [https://docs.python.org/3/library/functions.html#float] = 300, output_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = 'eps_sph', refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: SphereBase

Spherical dielectric profiles.

Components are calculated along the radial (\(r\)) direction either with respect
to the center of the simulation box or the center of mass of the refgroup, if
provided.

For usage, please refer to How-to: Dielectric
constant and for details on the theory see
Dielectric constant measurement.

For correlation analysis, the radial (\(r\)) component is used.
For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

Also, please read and cite [1].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Reference temperature (K)

	output_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for output files.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.eps_rad

	Reduced inverse radial dielectric profile (\(\varepsilon^{-1}_r - 1)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.deps_rad

	Uncertainty of inverse radial dielectric profile

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Christian Schaaf and Stephan Gekle. Dielectric response of the water hydration layer around spherical solutes. Phys. Rev. E, 92(3):032718, September 2015. doi:10.1103/PhysRevE.92.032718 [https://doi.org/10.1103/PhysRevE.92.032718].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

DipoleAngle

	
class maicos.DipoleAngle(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = False, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'residues', pdim: int [https://docs.python.org/3/library/functions.html#int] = 2, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'dipangle.dat', jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: AnalysisBase

Angle timeseries of dipole moments with respect to an axis.

The analysis can be applied to study the orientational dynamics of water molecules
during an excitation pulse. For more details read
Elgabarty et al.[1].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	pdim ({0, 1, 2}) – direction of the projection

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.t

	time (ps).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
resulst.cos_theta_i

	Average \(\cos\) between dipole and axis.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
resulst.cos_theta_ii

	Average \(\cos²\) of the dipoles and axis.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
resulst.cos_theta_ij

	Product \(\cos\) of dipole i and cos of dipole j (i != j).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Hossam Elgabarty, Tobias Kampfrath, Douwe Jan Bonthuis, Vasileios Balos, Naveen Kumar Kaliannan, Philip Loche, Roland R. Netz, Martin Wolf, Thomas D. Kühne, and Mohsen Sajadi. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Science Advances, 6(17):eaay7074, April 2020. doi:10.1126/sciadv.aay7074 [https://doi.org/10.1126/sciadv.aay7074].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

DiporderCylinder

	
class maicos.DiporderCylinder(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'residues', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'diporder_cylinder.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, pdim: str [https://docs.python.org/3/library/stdtypes.html#str] = 'r', order_parameter: str [https://docs.python.org/3/library/stdtypes.html#str] = 'P0', jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfileCylinderBase

Cylindrical dipolar order parameters.

Calculations include the projected dipole density
\(P_0⋅ρ(z)⋅\cos(θ[z])\), the dipole orientation \(\cos(θ[z])\), the squared
dipole orientation \(\cos²(Θ[z])\) and the number density \(ρ(z)\).

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	pdim ({"r", "z"}) – direction of the projection

	order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –
	Order parameter to be calculated:
	
	"P0": total dipole moment projected on an axis

	"cos_theta": cosine of the dipole moment with an axis

	"cos_2_theta": squred cosine with an axis.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

DiporderPlanar

	
class maicos.DiporderPlanar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, sym: bool [https://docs.python.org/3/library/functions.html#bool] = False, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'residues', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'diporder_planar.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, pdim: int [https://docs.python.org/3/library/functions.html#int] = 2, order_parameter: str [https://docs.python.org/3/library/stdtypes.html#str] = 'P0', jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfilePlanarBase

Cartesian dipolar order parameters.

Calculations include the projected dipole density
\(P_0⋅ρ(z)⋅\cos(θ[z])\), the dipole orientation \(\cos(θ[z])\), the squared
dipole orientation \(\cos²(Θ[z])\) and the number density \(ρ(z)\).

For the correlation analysis the central bin
(\(N \backslash 2\)) of the 0th’s group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	pdim ({0, 1, 2}) – direction of the projection

	order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –
	Order parameter to be calculated:
	
	"P0": total dipole moment projected on an axis

	"cos_theta": cosine of the dipole moment with an axis

	"cos_2_theta": squred cosine with an axis.

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

DiporderSphere

	
class maicos.DiporderSphere(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'residues', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'diporder_sphere.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, order_parameter: str [https://docs.python.org/3/library/stdtypes.html#str] = 'P0', jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfileSphereBase

Spherical dipolar order parameters.

Calculations include the projected dipole density
\(P_0⋅ρ(z)⋅\cos(θ[z])\), the dipole orientation \(\cos(θ[z])\), the squared
dipole orientation \(\cos²(Θ[z])\) and the number density \(ρ(z)\).

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –
	Order parameter to be calculated:
	
	"P0": total dipole moment projected on an axis

	"cos_theta": cosine of the dipole moment with an axis

	"cos_2_theta": squred cosine with an axis.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

DiporderStructureFactor

	
class maicos.DiporderStructureFactor(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'molecules', refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, qmin: float [https://docs.python.org/3/library/functions.html#float] = 0, qmax: float [https://docs.python.org/3/library/functions.html#float] = 6, dq: float [https://docs.python.org/3/library/functions.html#float] = 0.01, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'sq.dat')

	Bases: AnalysisBase

Structure factor for dipoles.

Extension the standard structure factor \(S(q)\) by weighting it with different
the normalized dipole moment \(\hat{\boldsymbol{\mu}}\) of a group according
to

\[S(q)_{\hat{\boldsymbol{\mu}} \hat{\boldsymbol{\mu}}} = \left \langle
\frac{1}{N} \sum_{i,j=1}^N \hat \mu_i \hat \mu_j \, \exp(-i\boldsymbol q\cdot
[\boldsymbol r_i - \boldsymbol r_j]) \right \rangle\]

For the correlation time estimation the module will use the value of the structure
factor with the smallest possible \(q\) value.

For an detailed example on the usage refer to the how-to on dipolar
correlation functions. For general
details on the theory behind the structure factor refer to Small-angle X-ray scattering.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	qmin (float [https://docs.python.org/3/library/functions.html#float]) – Starting q (1/Å)

	qmax (float [https://docs.python.org/3/library/functions.html#float]) – Ending q (1/Å)

	dq (float [https://docs.python.org/3/library/functions.html#float]) – bin_width (1/Å)

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.q

	length of binned q-vectors

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.structure_factors

	Structure factor

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

KineticEnergy

	
class maicos.KineticEnergy(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = False, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ke.dat', refpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com')

	Bases: AnalysisBase

Kinetic energy timeseries.

The kinetic energy function computes the translational and rotational kinetic energy
with respect to molecular center (center of mass, center of charge) of a molecular
dynamics simulation trajectory.

The analysis can be applied to study the dynamics of water molecules during an
excitation pulse. For more details read
Elgabarty et al.[1].

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	refpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference point for molecular center: center of mass ("com") or center of
charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.t

	time (ps).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.trans

	translational kinetic energy (kJ/mol).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.rot

	rotational kinetic energy (kJ/mol).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Hossam Elgabarty, Tobias Kampfrath, Douwe Jan Bonthuis, Vasileios Balos, Naveen Kumar Kaliannan, Philip Loche, Roland R. Netz, Martin Wolf, Thomas D. Kühne, and Mohsen Sajadi. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Science Advances, 6(17):eaay7074, April 2020. doi:10.1126/sciadv.aay7074 [https://doi.org/10.1126/sciadv.aay7074].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

PDFCylinder

	
class maicos.modules.pdfcylinder.PDFCylinder(g1: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], g2: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width_pdf_z: float [https://docs.python.org/3/library/functions.html#float] = 0.3, bin_width_pdf_phi: float [https://docs.python.org/3/library/functions.html#float] = 0.1, drwidth: float [https://docs.python.org/3/library/functions.html#float] = 0.1, dmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, dmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, density: bool [https://docs.python.org/3/library/functions.html#bool] = False, origin: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = False, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'pdf.dat')

	Bases: CylinderBase

Shell-wise one-dimensional (cylindrical) pair distribution functions.

The one-dimensional pair distribution functions \(g_{\text{1d}}(\phi)\)
and \(g_{\text{1d}}(z)\) describes the pair distribution to particles
which lie on the same cylinder along the angular and axial directions
respectively. These functions can be used in cylindrical systems that are
inhomogeneous along radial coordinate, and homogeneous in the angular and
axial directions. It gives the average number density of \(g2\) as a
function of angular and axial distances respectively from a \(g1\) atom.
Then the angular pair distribution function is

\[g_{\text{1d}}(\phi) = \left \langle \sum_{i}^{N_{g_1}}
\sum_{j}^{N_{g2}} \delta(\phi - \phi_{ij}) \delta(R_{ij}) \delta(z_{ij})
\right \rangle\]

And the axial pair distribution function is

\[g_{\text{1d}}(z) = \left \langle \sum_{i}^{N_{g_1}}
\sum_{j}^{N_{g2}} \delta(z - z_{ij}) \delta(R_{ij}) \delta(\phi_{ij})
\right \rangle\]

Even though due to consistency reasons the results are called pair distribution
functions the output is not unitless. The default output is is in dimension of
number/volume in \(Å^{-3}\). If density is set to True [https://docs.python.org/3/library/constants.html#True], the
output is normalised by the density of \(g2\).

	Parameters:

	
	g1 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – First AtomGroup.

	g2 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Second AtomGroup.

	pdf_z_bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Binwidth of bins in the histogram of the axial PDF (Å).

	pdf_phi_bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Binwidth of bins in the histogram of the angular PDF (Å).

	drwidth (float [https://docs.python.org/3/library/functions.html#float]) – radial width of a PDF cylindrical shell (Å), and axial or angular (arc) slices.

	dmin (float [https://docs.python.org/3/library/functions.html#float]) – the minimum pairwise distance between ‘g1’ and ‘g2’ (Å).

	dmax (float [https://docs.python.org/3/library/functions.html#float]) – the maximum pairwise distance between ‘g1’ and ‘g2’ (Å).

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – normalise the PDF by the density of ‘g2’ (\(Å^{-3}\)).

	origin (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Set origin of the cylindrical coordinate system (x,y,z). If None [https://docs.python.org/3/library/constants.html#None] the
origin will be set according to the refgroup parameter.

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.phi_bins

	Angular distances to which the PDF is calculated with shape (pdf_nbins) (Å)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.z_bins

	axial distances to which the PDF is calculated with shape (pdf_nbins) (Å)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.phi_pdf

	Angular PDF with shape (pdf_nbins, n_bins) (\(\text{Å}^{-3}\))

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.z_pdf

	Axial PDF with shape (pdf_nbins, n_bins) (\(\text{Å}^{-3}\))

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

PDFPlanar

	
class maicos.PDFPlanar(g1: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], g2: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, pdf_bin_width: float [https://docs.python.org/3/library/functions.html#float] = 0.3, dzheight: float [https://docs.python.org/3/library/functions.html#float] = 0.1, dmin: float [https://docs.python.org/3/library/functions.html#float] = 0.0, dmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'pdf.dat', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = False, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1)

	Bases: PlanarBase

Slab-wise planar 2D pair distribution functions.

The pair distribution function \(g_\mathrm{2D}(r)\) describes the
spatial correlation between atoms in \(g_1\) and atoms in
\(g_2\), which lie in the same plane.
It gives the average number density of \(g_2\) atoms as a function of lateral
distance \(r\) from a centered \(g_1\) atom.
PDFPlanar can be used in systems that are inhomogeneous along one axis,
and homogeneous in a plane.
In fully homogeneous systems and in the limit of small ‘dzheight’
\(\Delta z\), it is the same as the well known three dimensional PDF.

The planar PDF is defined by

\[g_\mathrm{2D}(r) = \left \langle
\frac{1}{N_{g1}} \cdot \sum_{i}^{N_{g1}} \sum_{j}^{N_{g2}}
\frac{1}{2 \pi r} \delta(r - r_{ij}) \delta(z_{ij})
\right \rangle .\]

where the brackets \(\langle \cdot \rangle\) denote the ensemble
average. \(\delta(r- r_{ij})\) counts the \(g_2\) atoms at distance
\(r\) from atom \(i\).
\(\delta(z_{ij})\) ensures that only atoms, which lie
in the same plane \(z_i = z_j\), are considered for the PDF.

Discretized for computational purposes the equation reads as

\[g_\mathrm{2D}(r) =
\frac{1}{N_{g1}} \cdot \sum_{i}^{N_{g1}} \frac{\mathrm{count}\; g_2 \;
\mathrm{in}\; \Delta V_i(r) }{\Delta V_i(r)} .\]

where \(\Delta V_i(r)\) is a ring around atom i, with inner
radius \(r - \frac{\Delta r}{2}\), outer radius
\(r + \frac{\Delta r}{2}\) and height \(2 \Delta z\).

As the density to normalise the PDF with is unknown, the output is in
the dimension of number/volume in 1/Å^3.

Functionally, PDFPlanar bins all pairwise \(g_1\)-\(g_2\) distances,
where the z distance is smaller than ‘dzheight’ in a histogram.

For a more detailed explanation refer to
Explanation: PDF and
PDFPlanar Derivation

	Parameters:

	
	g1 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – First AtomGroup.

	g2 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Second AtomGroup.

	pdf_bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Binwidth of bins in the histogram of the PDF (Å).

	dzheight (float [https://docs.python.org/3/library/functions.html#float]) – dz height of a PDF slab \(\Delta z\) (Å). \(\Delta z\) is
introduced to discretize the delta function \(\delta(z_{ij})\).
It is the maximum \(z\) distance between atoms which are
considered to lie in the same plane.
In the limit of \(\Delta z \to 0\), PDFPlanar reaches the
continous limit. However, if \(\Delta z\) is too small, there
are no atoms in g2 to sample.
We recommend a choice of \(\Delta z\) that is 1/10th of
a bond length.

	dmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimum pairwise distance between g1 and g2 (Å).

	dmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximum pairwise distance between g1 and g2 (Å).

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.bins

	distances to which the PDF is calculated with shape (pdf_nbins) (Å)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.pdf

	PDF with shape (pdf_nbins, n_bins) (1/Å^3)

	Type:

	np.ndrray

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

RDFDiporder

	
class maicos.RDFDiporder(g1: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], g2: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 0.1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0.0, rmax: float [https://docs.python.org/3/library/functions.html#float] = 15.0, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', norm: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rdf', grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'residues', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'diporderrdf.dat')

	Bases: AnalysisBase

Spherical Radial Distribution function between dipoles.

The implementation is heavily inspired by MDAnalysis.analysis.rdf.InterRDF [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF]
and is according to Zhang and Galli[1] given by

\[g_\mathrm{\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\mu}}}(r) = \frac{1}{N}
\left\langle \sum_i \frac{1}{n_i(r)} \sum_{j=1}^{n_i(r)}
(\hat{\boldsymbol{\mu}}_i \cdot \hat{\boldsymbol{\mu}}_j) \right \rangle\]

where \(\hat{\boldsymbol{\mu}}\) is the normalized dipole moment of a
grouping and \(n_i(r)\) is the number of dipoles within a spherical shell of
distance \(r\) and \(r + \delta r\) from dipole \(i\).

For the correlation time estimation the module will use the value of the RDF with
the largest possible \(r\) value.

For an detailed example on the usage refer to the how-to on dipolar
correlation functions.

	Parameters:

	
	g1 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – First AtomGroup.

	g2 (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Second AtomGroup.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	norm (str [https://docs.python.org/3/library/stdtypes.html#str], {'rdf', 'density', 'none'}) – For ‘rdf’ calculate \(g_{ab}(r)\). For ‘density’ the single group density
\(n_{ab}(r)\) is computed. ‘none’ computes the number of particles
occurences in each spherical shell.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.bins

	radial distances to which the RDF is calculated with shape (rdf_nbins) (Å)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.rdf

	RDF either in \(\text{eÅ}^{-2}\) if norm is "rdf" or "density" or
\(\text{eÅ}\) if norm is "none".

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
Cui Zhang and Giulia Galli. Dipolar correlations in liquid water. The Journal of Chemical Physics, 141(8):084504, August 2014. doi:10.1063/1.4893638 [https://doi.org/10.1063/1.4893638].

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

Saxs

	
class maicos.Saxs(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = False, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, bin_spectrum: bool [https://docs.python.org/3/library/functions.html#bool] = True, qmin: float [https://docs.python.org/3/library/functions.html#float] = 0, qmax: float [https://docs.python.org/3/library/functions.html#float] = 6, dq: float [https://docs.python.org/3/library/functions.html#float] = 0.1, thetamin: float [https://docs.python.org/3/library/functions.html#float] = 0, thetamax: float [https://docs.python.org/3/library/functions.html#float] = 180, output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'sq.dat')

	Bases: AnalysisBase

Small angle X-Ray scattering intensities (SAXS).

This module computes the structure factor \(S(q)\), the scattering intensity
\(I(q)\) and their corresponding scattering vectors \(q\). For a system
containing only one element the structure factor and the scattering intensity are
connected via the form factor \(f(q)\)

\[I(q) = [f(q)]^2 S(q)\]

For more details on the theory behind this module see Small-angle X-ray scattering.

By default the scattering vectors \(\boldsymbol{q}\) are binned according to
their length \(q\) using a bin width given by dq. Setting the option
bin_spectrum=False, also the raw scattering vectors and their corresponding
Miller indices can be saved. Saving the scattering vectors and Miller indices is
only possible when the box vectors are constant in the whole trajectory (NVT) since
for changing cells the same Miller indices correspond to different scattering
vectors.

Analyzed scattering vectors \(q\) can be restricted by a minimal and maximal
angle with the z-axis. For 0 and 180, all possible vectors are taken into
account. To obtain the scattering intensities, the structure factor is normalized by
an element-specific form factor based on Cromer-Mann parameters
Prince[1].

For the correlation time estimation the module will use the value of the scattering
intensity with the largest possible \(q\) value.

For an example on the usage refer to How-to: SAXS.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	bin_spectrum (bool [https://docs.python.org/3/library/functions.html#bool]) – Bin the spectrum. If False [https://docs.python.org/3/library/constants.html#False] Miller indices of q-vector are returned.
Only works for NVT simulations.

	qmin (float [https://docs.python.org/3/library/functions.html#float]) – Starting q (1/Å)

	qmax (float [https://docs.python.org/3/library/functions.html#float]) – Ending q (1/Å)

	dq (float [https://docs.python.org/3/library/functions.html#float]) – bin_width (1/Å)

	thetamin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal angle (°) between the q vectors and the z-axis.

	thetamax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal angle (°) between the q vectors and the z-axis.

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.scattering_vectors

	Length of the binned scattering vectors.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.miller_indices

	Miller indices of q-vector (only available if bin_spectrum==False).

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.struture_factors

	structure factors \(S(q)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.scattering_intensities

	scattering intensities \(I(q)\)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

References

[1]
E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed. edition edition, January 2004. ISBN 978-1-4020-1900-5.

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

TemperaturePlanar

	
class maicos.TemperaturePlanar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: float [https://docs.python.org/3/library/functions.html#float] = 1, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, sym: bool [https://docs.python.org/3/library/functions.html#bool] = False, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'temperature.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfilePlanarBase

Temperature profiles in a cartesian geometry.

Currently only atomistic temperature profiles are supported. Therefore grouping per
molecule, segment, residue, or fragment is not possible.

For the correlation analysis the central bin
(\(N \backslash 2\)) of the 0th’s group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

VelocityCylinder

	
class maicos.VelocityCylinder(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: int [https://docs.python.org/3/library/functions.html#int] = 1, rmin: float [https://docs.python.org/3/library/functions.html#float] = 0, rmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'velocity.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0, vdim: int [https://docs.python.org/3/library/functions.html#int] = 0, flux: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: ProfileCylinderBase

Cartesian velocity profile across a cylinder.

Reads in coordinates and velocities from a trajectory and calculates a velocity
\([\mathrm{Å/ps}]\) or a flux per unit area \([\mathrm{Å^{-2}\,ps^{-1}}]\)
profile along a given axis.

The grouping keyword gives you fine control over the velocity profile, e.g. you
can choose atomar or molecular velocities. Note that if the first one is employed
for complex compounds, usually a contribution corresponding to the vorticity appears
in the profile.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.
vdim : {0, 1, 2}
Dimension for velocity binning (x=0, y=1, z=1).

	flux (bool [https://docs.python.org/3/library/functions.html#bool]) – Calculate the flux (\([Å^2/\mathrm{ps}]\)) instead of the velocity.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

VelocityPlanar

	
class maicos.VelocityPlanar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], dim: int [https://docs.python.org/3/library/functions.html#int] = 2, zmin: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, zmax: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, bin_width: int [https://docs.python.org/3/library/functions.html#int] = 1, refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None] = None, sym: bool [https://docs.python.org/3/library/functions.html#bool] = False, grouping: str [https://docs.python.org/3/library/stdtypes.html#str] = 'atoms', unwrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, bin_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'com', output: str [https://docs.python.org/3/library/stdtypes.html#str] = 'velocity.dat', concfreq: int [https://docs.python.org/3/library/functions.html#int] = 0, vdim: int [https://docs.python.org/3/library/functions.html#int] = 0, flux: bool [https://docs.python.org/3/library/functions.html#bool] = False, jitter: float [https://docs.python.org/3/library/functions.html#float] = 0.0)

	Bases: ProfilePlanarBase

Velocity profiles in a cartesian geometry.

Reads in coordinates and velocities from a trajectory and calculates a velocity
\([\mathrm{Å/ps}]\) or a flux per unit area \([\mathrm{Å^{-2}\,ps^{-1}}]\)
profile along a given axis.

The grouping keyword gives you fine control over the velocity profile, e.g. you
can choose atomar or molecular velocities. Note that if the first one is employed
for complex compounds, usually a contribution corresponding to the vorticity appears
in the profile.

For the correlation analysis the central bin
(\(N \backslash 2\)) of the 0th’s group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.
vdim : {0, 1, 2}
Dimension for velocity binning (x=0, y=1, z=1).

	$FLUX_PARAMETER} –

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

API Documentation

	Core classes
	Base classes

	Planar classes

	Cylinder classes

	Sphere classes

	Library functions
	Mathematical helper functions

	General helper functions

	Weighting functions

	Tables

Core classes

These Modules build the core of other MAICoS modules.

Core classes

	Base classes
	AnalysisBase

	AnalysisCollection

	ProfileBase

	Planar classes
	PlanarBase

	ProfilePlanarBase

	Cylinder classes
	CylinderBase

	ProfileCylinderBase

	Sphere classes
	SphereBase

	ProfileSphereBase

Base classes

	AnalysisBase

	AnalysisCollection

	ProfileBase

AnalysisBase

	
class maicos.core.AnalysisBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: None [https://docs.python.org/3/library/constants.html#None] | AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], wrap_compound: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: _Runner, AnalysisBase [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase]

Base class derived from MDAnalysis for defining multi-frame analysis.

The class is designed as a template for creating multi-frame analyses. This class
will automatically take care of setting up the trajectory reader for iterating, and
it offers to show a progress meter. Computed results are stored inside the
results attribute. To define a new analysis, AnalysisBase needs to be
subclassed and _single_frame() must be defined. It is also possible to define
_prepare() and _conclude() for pre- and post-processing. All results
should be stored as attributes of the MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]
container.

During the analysis, the correlation time of an observable can be estimated to
ensure that calculated errors are reasonable. For this, the _single_frame()
method has to return a single float [https://docs.python.org/3/library/functions.html#float]. For details on the computation of the
correlation and its further analysis refer to
maicos.lib.util.correlation_analysis().

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	wrap_compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues",
"segments", "molecules", or "fragments".

	
atomgroup

	A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	Type:

	MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]

	
_universe

	The Universe the AtomGroup belong to

	Type:

	MDAnalysis.core.universe.Universe [https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe]

	
_trajectory

	The trajectory the AtomGroup belong to

	Type:

	MDAnalysis.coordinates.base.ReaderBase [https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase]

	
times

	array of Timestep times. Only exists after calling
AnalysisBase.run()

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
frames

	array of Timestep frame indices. Only exists after calling
AnalysisBase.run()

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
_frame_index

	index of the frame currently analysed

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
_index

	Number of frames already analysed (same as _frame_index + 1)

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
results

	results of calculation are stored after call to AnalysisBase.run()

	Type:

	MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]

	
_obs

	Observables of the current frame

	Type:

	MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]

	
_obs.box_center

	Center of the simulation cell of the current frame

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
sums

	Sum of the observables across frames. Keys are the same as _obs.

	Type:

	MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]

	
means

	Means of the observables. Keys are the same as _obs.

	Type:

	MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]

	
sems

	Standard errors of the mean of the observables. Keys are the same as
_obs

	Type:

	MDAnalysis.analysis.base.Results [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results]

	
corrtime

	The correlation time of the analysed data. For details on how this is
calculated see maicos.lib.util.correlation_analysis().

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any of the provided AtomGroups (atomgroup or refgroup) does
 not contain any atoms.

Example

To write your own analysis module you can use the example given below. As with all
MAICoS modules, this inherits from the maicos.core.base.AnalysisBase class.

The example will calculate the average box volume and stores the result within the
result object of the class.

>>> import logging
>>> from typing import Optional

>>> import MDAnalysis as mda
>>> import numpy as np

>>> from maicos.core import AnalysisBase
>>> from maicos.lib.util import render_docs

Creating a logger makes debugging easier.

>>> logger = logging.getLogger(__name__)

In the following the analysis module itself. Due to the similar structure of all
MAICoS modules you can render the parameters using the
maicos.lib.util.render_docs() decorator. The decorator will replace special
keywords with a leading $ with the actual docstring as defined in
maicos.lib.util.DOC_DICT.

>>> @render_docs
... class NewAnalysis(AnalysisBase):
... '''Analysis class calcuting the average box volume.'''
...
... def __init__(
... self,
... atomgroup: mda.AtomGroup,
... concfreq: int = 0,
... temperature: float = 300,
... output: str = "outfile.dat",
...):
... super().__init__(
... atomgroup=atomgroup,
... refgroup=None,
... unwrap=False,
... jitter=0.0,
... wrap_compound="atoms",
... concfreq=concfreq,
...)
...
... self.temperature = temperature
... self.output = output
...
... def _prepare(self):
... '''Set things up before the analysis loop begins.'''
... # self.atomgroup refers to the provided `atomgroup`
... # self._universe refers to full universe of given `atomgroup`
... self.volume = 0
...
... def _single_frame(self):
... '''Calculate data from a single frame of trajectory.
...
... Don't worry about normalising, just deal with a single frame.
... '''
... # Current frame index: self._frame_index
... # Current timestep object: self._ts
...
... volume = self._ts.volume
... self.volume += volume
...
... # Eeach module should return a characteristic scalar which is used
... # by MAICoS to estimate correlations of an Analysis.
... return volume
...
... def _conclude(self):
... '''Finalise the results you've gathered.
...
... Called at the end of the run() method to finish everything up.
... '''
... self.results.volume = self.volume / self.n_frames
... logger.info(
... "Average volume of the simulation box "
... f"{self.results.volume:.2f} Å³"
...)
...
... def save(self) -> None:
... '''Save results of analysis to file specified by ``output``.
...
... Called at the end of the run() method after _conclude.
... '''
... self.savetxt(
... self.output, np.array([self.results.volume]), columns="volume / Å³"
...)
...

Afterwards the new analysis can be run like this

>>> import MDAnalysis as mda
>>> from MDAnalysisTests.datafiles import TPR, XTC

>>> u = mda.Universe(TPR, XTC)

>>> na = NewAnalysis(u.atoms)
>>> _ = na.run(start=0, stop=10)
>>> round(na.results.volume, 2)
362631.65

Results can also be accessed by key

>>> round(na.results["volume"], 2)
362631.65

	
property box_center: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Center of the simulation cell.

	
run(start: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, stop: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, step: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, frames: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, verbose: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, progressbar_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None) → Self

	Iterate over the trajectory.

	
savetxt(fname: str [https://docs.python.org/3/library/stdtypes.html#str], X: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], columns: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Save to text.

An extension of the numpy savetxt function. Adds the command line input to the
header and checks for a doubled defined filesuffix.

Return a header for the text file to save the data to. This method builds a
generic header that can be used by any MAICoS module. It is called by the save
method of each module.

	The information it collects is:
	
	timestamp of the analysis

	name of the module

	version of MAICoS that was used

	command line arguments that were used to run the module

	module call including the default arguments

	number of frames that were analyzed

	atomgroup that was analyzed

	output messages from modules and base classes (if they exist)

AnalysisCollection

	
class maicos.core.AnalysisCollection(*analysis_instances: AnalysisBase)

	Bases: _Runner

Running a collection of analysis classes on the same single trajectory.

Warning

AnalysisCollection is still experimental. You should not use it for anything
important.

An analyses with AnalysisCollection can lead to a speedup compared to running
the individual analyses, since the trajectory loop is performed only once. The class
requires that each analysis is a child of AnalysisBase. Additionally, the
trajectory of all analysis_instances must be the same. It is ensured that all
analysis instances use the same original timestep and not an altered one from a
previous analysis instance.

	Parameters:

	*analysis_instances (AnalysisBase) – Arbitrary number of analysis instances to be run on the same trajectory.

	Raises:

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the provided analysis_instances do not work on the same trajectory.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If an analysis_instances is not a child of AnalysisBase.

Example

>>> import MDAnalysis as mda
>>> from maicos import DensityPlanar
>>> from maicos.core import AnalysisCollection
>>> from MDAnalysisTests.datafiles import TPR, XTC
>>> u = mda.Universe(TPR, XTC)

Select atoms

>>> ag_O = u.select_atoms("name O")
>>> ag_H = u.select_atoms("name H")

Create the individual analysis instances

>>> dplan_O = DensityPlanar(ag_O)
>>> dplan_H = DensityPlanar(ag_H)

Create a collection for common trajectory

>>> collection = AnalysisCollection(dplan_O, dplan_H)

Run the collected analysis

>>> _ = collection.run(start=0, stop=100, step=10)

Results are stored in the individual instances see AnalysisBase on how to
access them. You can also save all results of the analysis within one call:

>>> collection.save()

	
run(start: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, stop: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, step: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, frames: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, verbose: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, progressbar_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None) → Self

	Iterate over the trajectory.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start frame of analysis

	stop (int [https://docs.python.org/3/library/functions.html#int]) – stop frame of analysis

	step (int [https://docs.python.org/3/library/functions.html#int]) – number of frames to skip between each analysed frame

	frames (array_like) – array of integers or booleans to slice trajectory; frames can only be
used instead of start, stop, and step. Setting both
frames and at least one of start, stop, step to a
non-default value will raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn on verbosity

	progressbar_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProgressBar keywords with custom parameters regarding progress bar position,
etc; see MDAnalysis.lib.log.ProgressBar [https://docs.mdanalysis.org/stable/documentation_pages/lib/log.html#MDAnalysis.lib.log.ProgressBar] for full list.

	Returns:

	self – analysis object

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of all analysis_instances to disk.

The methods calls the save() method of all analysis_instances if
available. If an instance has no save() method a warning for this instance
is issued.

ProfileBase

	
class maicos.core.ProfileBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], output: str [https://docs.python.org/3/library/stdtypes.html#str], weighting_function: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], weighting_function_kwargs: None [https://docs.python.org/3/library/constants.html#None] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict], normalization: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for computing profiles.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	weighting_function (callable) – The function calculating the array weights for the histogram analysis. It must
take an AtomGroup as first argument and a
grouping ("atoms", "residues", "segments", "molecules",
"fragments") as second.
Additional parameters can be given as weighting_function_kwargs. The
function must return a numpy.ndarray with the same length as the number of group
members.

	weighting_function_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments for weighting_function

	normalization ({"none", "number", "volume"}) – The normalization of the profile performed in every frame. If None [https://docs.python.org/3/library/constants.html#None], no
normalization is performed. If number, the histogram is divided by the number
of occurences in each bin. If volume, the profile is divided by the volume of
each bin.

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Save results of analysis to file specified by output.

Planar classes

	PlanarBase

	ProfilePlanarBase

PlanarBase

	
class maicos.core.PlanarBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], dim: int [https://docs.python.org/3/library/functions.html#int], zmin: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], zmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], wrap_compound: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: AnalysisBase

Analysis class providing options and attributes for a planar system.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	wrap_compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues",
"segments", "molecules", or "fragments".

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
zmin

	Minimal coordinate for evaluation (Å) with in the lab frame, where 0
corresponds to the origin of the cell.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
zmax

	Maximal coordinate for evaluation (Å) with in the lab frame, where 0
corresponds to the origin of the cell.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.L

	Average length (in Å) along the chosen dimension in the current frame.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_pos

	Central bin positions (in Å) of each bin (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
_obs.bin_width

	Bin width (in Å) in the current frame

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_edges

	Edges of the bins (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins + 1)

	
_obs.bin_area

	Area of the rectangle of each bin in the current frame. Calculated via
\(L_x \cdot L_y / N_\mathrm{bins}\) where \(L_x\) and \(L_y\) are
the box lengths perpendicular to the dimension of evaluations given by dim.
\(N_\mathrm{bins}\) is the number of bins.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
results.bin_volume

	Volume of an cuboid of each bin (in Å^3) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
property odims: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Other dimensions perpendicular to dim i.e. (0,2) if dim = 1.

ProfilePlanarBase

	
class maicos.core.ProfilePlanarBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], dim: int [https://docs.python.org/3/library/functions.html#int], zmin: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], zmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], sym: bool [https://docs.python.org/3/library/functions.html#bool], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], output: str [https://docs.python.org/3/library/stdtypes.html#str], weighting_function: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], weighting_function_kwargs: None [https://docs.python.org/3/library/constants.html#None] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict], normalization: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: PlanarBase, ProfileBase

Base class for computing profiles in a cartesian geometry.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	sym (bool [https://docs.python.org/3/library/functions.html#bool]) – Symmetrize the profile. Only works in combination with
refgroup.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	weighting_function (callable) – The function calculating the array weights for the histogram analysis. It must
take an AtomGroup as first argument and a
grouping ("atoms", "residues", "segments", "molecules",
"fragments") as second.
Additional parameters can be given as weighting_function_kwargs. The
function must return a numpy.ndarray with the same length as the number of group
members.

	weighting_function_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments for weighting_function

	normalization ({"none", "number", "volume"}) – The normalization of the profile performed in every frame. If None [https://docs.python.org/3/library/constants.html#None], no
normalization is performed. If number, the histogram is divided by the number
of occurences in each bin. If volume, the profile is divided by the volume of
each bin.

	
results.bin_pos

	Bin positions (in Å) ranging from zmin to zmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Cylinder classes

	CylinderBase

	ProfileCylinderBase

CylinderBase

	
class maicos.core.CylinderBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], dim: int [https://docs.python.org/3/library/functions.html#int], zmin: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], zmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], rmin: float [https://docs.python.org/3/library/functions.html#float], rmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], wrap_compound: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: PlanarBase

Analysis class providing options and attributes for a cylinder system.

Provide the results attribute r.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	wrap_compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues",
"segments", "molecules", or "fragments".

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
pos_cyl

	positions in cylinder coordinats (r, phi, z)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
_obs.R

	Average length (in Å) along the radial dimension in the current frame.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_pos

	Central bin position of each bin (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
_obs.bin_width

	Bin width (in Å) in the current frame

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_edges

	Edges of the bins (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins + 1)

	
_obs.bin_area

	Area of the annulus pf the each bin in the current frame. Calculated via
\(\pi \left(r_{i+1}^2 - r_i^2 \right)\) where i is the index of the bin.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
_obs.bin_volume

	Volume of an hollow cylinder of each bin (in Å^3) in the current frame.
Calculated via \(\pi L \left(r_{i+1}^2 - r_i^2 \right)\) where i is the
index of the bin.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

ProfileCylinderBase

	
class maicos.core.ProfileCylinderBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], dim: int [https://docs.python.org/3/library/functions.html#int], zmin: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], zmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], rmin: float [https://docs.python.org/3/library/functions.html#float], rmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], output: str [https://docs.python.org/3/library/stdtypes.html#str], weighting_function: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], weighting_function_kwargs: None [https://docs.python.org/3/library/constants.html#None] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict], normalization: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: CylinderBase, ProfileBase

Base class for computing radial profiles in a cylindrical geometry.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	zmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into
account.

	zmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal coordinate for evaluation (in Å) with respect to the center of mass of
the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into
account.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	weighting_function (callable) – The function calculating the array weights for the histogram analysis. It must
take an AtomGroup as first argument and a
grouping ("atoms", "residues", "segments", "molecules",
"fragments") as second.
Additional parameters can be given as weighting_function_kwargs. The
function must return a numpy.ndarray with the same length as the number of group
members.

	weighting_function_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments for weighting_function

	normalization ({"none", "number", "volume"}) – The normalization of the profile performed in every frame. If None [https://docs.python.org/3/library/constants.html#None], no
normalization is performed. If number, the histogram is divided by the number
of occurences in each bin. If volume, the profile is divided by the volume of
each bin.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Sphere classes

	SphereBase

	ProfileSphereBase

SphereBase

	
class maicos.core.SphereBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], rmin: float [https://docs.python.org/3/library/functions.html#float], rmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], wrap_compound: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: AnalysisBase

Analysis class providing options and attributes for a spherical system.

Provide the results attribute r.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	wrap_compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues",
"segments", "molecules", or "fragments".

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
pos_sph

	positions in spherical coordinats (r, phi, theta)

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
_obs.R

	Average length (in Å) along the radial dimension in the current frame.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_pos

	Central bin position of each bin (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
_obs.bin_width

	Bin width (in Å) in the current frame

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
_obs.bin_edges

	Edges of the bins (in Å) in the current frame.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins + 1)

	
_obs.bin_area

	Surface area (in Å^2) of the sphere of each bin with radius bin_pos in the
current frame. Calculated via \(4 \pi r_i^2\) where \(i\) is the index
of the bin.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

	
results.bin_volume

	volume of a spherical shell of each bins (in Å^3) of the current frame.
Calculated via \(4\pi/3 \left(r_{i+1}^3 - r_i^3 \right)\) where i is the
index of the bin.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], (n_bins)

ProfileSphereBase

	
class maicos.core.ProfileSphereBase(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], unwrap: bool [https://docs.python.org/3/library/functions.html#bool], refgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] | None [https://docs.python.org/3/library/constants.html#None], jitter: float [https://docs.python.org/3/library/functions.html#float], concfreq: int [https://docs.python.org/3/library/functions.html#int], rmin: float [https://docs.python.org/3/library/functions.html#float], rmax: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float], bin_width: float [https://docs.python.org/3/library/functions.html#float], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], output: str [https://docs.python.org/3/library/stdtypes.html#str], weighting_function: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], weighting_function_kwargs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict] | None [https://docs.python.org/3/library/constants.html#None], normalization: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: SphereBase, ProfileBase

Base class for computing radial profiles in a spherical geometry.

For the correlation analysis the 0th bin of the 0th’s
group profile is used. For further information on the correlation analysis please
refer to maicos.core.base.AnalysisBase or the General design
section.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], molecules that are broken due to the periodic boundary
conditions are made whole.

If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag -no-unwrap when using MAICoS
from the command line, or use unwrap=False when using MAICoS from the Python
interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the trjconv command of GROMACS.

	refgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Reference AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] used for the calculation.
If refgroup is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If refgroup is None [https://docs.python.org/3/library/constants.html#None] the calculations are
performed with respect to the center of the (changing) box.

	jitter (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If jitter = 0.0 (default), the original atomic positions are kept
unchanged.

You can estimate the precision of the positions in your trajectory with
maicos.lib.util.trajectory_precision(). Note that if the precision is not
the same for all frames, the smallest precision should be used.

	concfreq (int [https://docs.python.org/3/library/functions.html#int]) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq
frames.

	rmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

	rmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

	bin_width (float [https://docs.python.org/3/library/functions.html#float]) – Width of the bins (in Å).

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename.

	weighting_function (callable) – The function calculating the array weights for the histogram analysis. It must
take an AtomGroup as first argument and a
grouping ("atoms", "residues", "segments", "molecules",
"fragments") as second.
Additional parameters can be given as weighting_function_kwargs. The
function must return a numpy.ndarray with the same length as the number of group
members.

	weighting_function_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments for weighting_function

	normalization ({"none", "number", "volume"}) – The normalization of the profile performed in every frame. If None [https://docs.python.org/3/library/constants.html#None], no
normalization is performed. If number, the histogram is divided by the number
of occurences in each bin. If volume, the profile is divided by the volume of
each bin.

	
results.bin_pos

	Bin positions (in Å) ranging from rmin to rmax.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.profile

	Calculated profile.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
results.dprofile

	Estimated profile’s uncertainity.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Library functions

Library modules of MAICoS.

This library contains additional modules, like general and mathematical helper
functions, which are used in the other MAICoS modules.

Library functions

	Mathematical helper functions

	General helper functions

	Weighting functions

	Tables

Mathematical helper functions

Helper functions for mathematical and physical operations.

	
maicos.lib.math.FT(t: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], x: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], indvar: bool [https://docs.python.org/3/library/functions.html#bool] = True) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Discrete Fourier transformation using fast Fourier transformation (FFT).

	Parameters:

	
	t (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Time values of the time series.

	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Function values corresponding to the time series.

	indvar (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], returns the FFT and frequency values. If False [https://docs.python.org/3/library/constants.html#False], returns
only the FFT.

	Returns:

	
	If indvar is True [https://docs.python.org/3/library/constants.html#True], returns a tuple (k, xf2) where:
	
	k (numpy.ndarray): Frequency values corresponding to the FFT.

	xf2 (numpy.ndarray): FFT of the input function, scaled by the time
range and phase shifted.

If indvar is False [https://docs.python.org/3/library/constants.html#False], returns the FFT (xf2) directly as a
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the time series is not equally spaced.

Example

>>> t = np.linspace(0, np.pi, 4)
>>> x = np.sin(t)
>>> k, xf2 = FT(t, x)
>>> k
array([-3. , -1.5, 0. , 1.5])
>>> np.round(xf2, 2)
array([0. +0.j , -0.68+0.68j, 1.36+0.j , -0.68-0.68j])

See also

	iFT()
	For the inverse fourier transform.

	
maicos.lib.math.center_cluster(ag: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], weights: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate the center of the atomgroup with respect to some weights.

	Parameters:

	
	ag (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – Group of atoms to calculate the center for.

	weights (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Weights in the shape of ag.

	Returns:

	com – The center with respect to the weights.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Without proper treatment of periodic boundrary conditions (PBC) most algorithms will
result in wrong center calculations. As shown below without treating PBC the center
of mass is located in the center of the box

+-----------+
| |
| 1 x 2 |
| |
+-----------+

However, the distance accross the box boundary is shorter and therefore the center
with PBC should be located somwhere else. The correct way to calculate the center is
described in Bai and Breen[1] where coordinates of the particles
are projected on a circle and weighted by their mass in this two dimensional space.
The center of mass is obtained by transforming this point back to the corresponding
point in the real system. This is done seperately for each dimension.

Reasons for doing this include the analysis of clusters in periodic boundrary
conditions and consistent center of mass calculation across box boundraries. This
procedure results in the right center of mass as seen below

+-----------+
| |
x 1 2 |
| |
+-----------+

	
maicos.lib.math.compute_form_factor(q: float [https://docs.python.org/3/library/functions.html#float], atom_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculate the form factor \(f(q)\).

\(f(q)\) is expressed in terms of the scattering vector as

\[f(q) = \sum_{i=1}^4 a_i e^{-b_i q^2/(4\pi)^2} + c \,.\]

The coefficients \(a_{1,\dots,4}\), \(b_{1,\dots,4}\) and \(c\) are also
known as Cromer-Mann X-ray scattering factors and are documented in
Prince[2].

For determining the elements maicos.lib.tables.atomtypes is used and the
Cromer-Mann X-ray scattering factors are stored in
maicos.lib.tables.CM_parameters.

	Parameters:

	
	q (float [https://docs.python.org/3/library/functions.html#float]) – The magnitude of the scattering vector in reciprocal angstroms (1/Å).

	atom_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the atom for which the form factor is calculated.

	Returns:

	The calculated form factor for the specified atom type and q.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
maicos.lib.math.compute_rdf_structure_factor(rdf: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], r: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], density: float [https://docs.python.org/3/library/functions.html#float]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Computes the structure factor based on the radial distribution function (RDF).

The structure factor \(S(q)\) based on the RDF \(g(r)\) is given by

\[S(q) = 1 + 4 \pi \rho \int_0^\infty \mathrm{d}r r
 \frac{\sin(qr)}{q} (g(r) - 1)\,\]

where \(q\) is the magnitude of the scattering vector. The calculation is
performed via a discrete sine transform as implemented in scipy.fftpack.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst].

For an example take a look at Small-angle X-ray scattering.

	Parameters:

	
	rdf (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – radial distribution function

	r (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – equally spaced distance array on which rdf is defined

	density (float [https://docs.python.org/3/library/functions.html#float]) – number density of particles

	Returns:

	
	q (numpy.ndarray) – array of q points

	struct_factor (numpy.ndarray) – structure factor

	
maicos.lib.math.correlation(a: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], b: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | None [https://docs.python.org/3/library/constants.html#None] = None, subtract_mean: bool [https://docs.python.org/3/library/functions.html#bool] = False) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate correlation or autocorrelation.

Uses fast fourier transforms to give the correlation function of two arrays, or, if
only one array is given, the autocorrelation. Setting subtract_mean=True causes
the mean to be subtracted from the input data.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The first input array to calculate the correlation

	b (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The second input array. If None [https://docs.python.org/3/library/constants.html#None], autocorrelation of a is calculated.

	subtract_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], subtract the mean from the input data.

	Returns:

	The correlation or autocorrelation function.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.math.correlation_time(timeseries: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'sokal', mintime: int [https://docs.python.org/3/library/functions.html#int] = 3, sokal_factor: float [https://docs.python.org/3/library/functions.html#float] = 8) → float [https://docs.python.org/3/library/functions.html#float]

	Compute the integrated correlation time of a time series.

The integrated correlation time (in units of the sampling interval) is given by

\[\tau = \sum\limits_{t=1}^{N_\mathrm{cut}} C(t) \left(1 - \frac{t}{N}\right)\]

where \(N_\mathrm{cut} < N\) is a subset of the time series of length \(N\)
and \(C(t)\) is the discrete-time autocorrelation function. To obtain the upper
limit of the sum \(N_\mathrm{cut}\) two different methods are provided:

	For “chodera” [3]
\(N_\mathrm{cut}\) is given by the time when \(C(t)\)
crosses zero the first time.

	For “sokal” [4] \(N_\mathrm{cut}\) is determined
iteratively by stepwise increasing until

\[N_\mathrm{cut} \geq c \cdot \tau\]

where \(c\) is the constant sokal_factor. If the condition is never
fulfilled, -1 is returned, indicating that the time series does not provide
sufficient statistics to estimate a
correlation time.

While both methods give the same correlation time for a smooth time series that
decays to 0, “sokal” will results in a more reasonable result for actual time series
that are noisy and cross zero several times.

	Parameters:

	
	timeseries (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The time series used to calculate the correlation time from.

	method ({"sokal", "chodera"}) – Method to choose summation cutoff \(N_\mathrm{cut}\).

	mintime (int [https://docs.python.org/3/library/functions.html#int]) – Minimum possible value for \(N_\mathrm{cut}\).

	sokal_factor (float [https://docs.python.org/3/library/functions.html#float]) – Cut-off factor \(c\) for the Sokal method.

	Returns:

	tau – Integrated correlation time \(\tau\). If -1 (only for
method="sokal") the provided time series does not provide sufficient
statistics to estimate a correlation time.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mintime is larger than the length of the timeseries.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If method is not one of “sokal” or “chodera”.

References

[1]
Linge Bai and David Breen. Calculating Center of Mass in an Unbounded 2D Environment. Journal of Graphics Tools, 13(4):53–60, January 2008. doi:10.1080/2151237X.2008.10129266 [https://doi.org/10.1080/2151237X.2008.10129266].

[2]
E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed. edition edition, January 2004. ISBN 978-1-4020-1900-5.

[3]
John D. Chodera, William C. Swope, Jed W. Pitera, Chaok Seok, and Ken A. Dill. Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. J. Chem. Theory Comput., 2007. doi:10.1021/ct0502864 [https://doi.org/10.1021/ct0502864].

[4]
A.D. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms, lecture notes.

	
maicos.lib.math.iFT(k: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], xf: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], indvar: bool [https://docs.python.org/3/library/functions.html#bool] = True) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Inverse Fourier transformation using fast Fourier transformation (FFT).

Takes the frequency series and the function as arguments. By default, returns the
iFT and the time series. Setting indvar=False means the function returns only the
iFT.

	Parameters:

	
	k (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The frequency series.

	xf (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The function series in the frequency domain.

	indvar (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], return both the iFT and the time series. If False [https://docs.python.org/3/library/constants.html#False], return
only the iFT.

	Returns:

	If indvar is True [https://docs.python.org/3/library/constants.html#True], returns a tuple containing the time series and the
iFT. If indvar is False [https://docs.python.org/3/library/constants.html#False], returns only the iFT.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the time series is not equally spaced.

See also

	FT()
	For the Fourier transform.

	
maicos.lib.math.new_mean(old_mean: float [https://docs.python.org/3/library/functions.html#float], data: float [https://docs.python.org/3/library/functions.html#float], length: int [https://docs.python.org/3/library/functions.html#int]) → float [https://docs.python.org/3/library/functions.html#float]

	Compute the arithmetic mean of a series iteratively.

Compute the arithmetic mean of n samples based on an existing mean of n-1 and the
n-th value.

Given the mean of a data series

\[\bar x_N = \frac{1}{N} \sum_{n=1}^N x_n\]

we seperate the last value

\[\bar x_N = \frac{1}{N} \sum_{n=1}^{N-1} x_n + \frac{x_N}{N}\]

and multiply 1 = (N - 1)/(N - 1)

\[\begin{split}\bar x_N = \frac{N-1}{N} \frac{1}{N-1} \\ \sum_{n=1}^{N-1} x_n + \frac{x_N}{N}\end{split}\]

The first term can be identified as the mean of the first N - 1 values and we arrive
at

\[\bar x_N = \frac{N-1}{N} \bar x_{N-1} + \frac{x_N}{N}\]

	Parameters:

	
	old_mean (float [https://docs.python.org/3/library/functions.html#float]) – arithmetic mean of the first n - 1 samples.

	data (float [https://docs.python.org/3/library/functions.html#float]) – n-th value of the series.

	length (int [https://docs.python.org/3/library/functions.html#int]) – Length of the updated series, here called n.

	Returns:

	new_mean – Updated mean of the series of n values.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Examples

The mean of a data set can easily be calculated from the data points. However this
requires one to keep all data points on hand until the end of the calculation.

>>> np.mean([1, 3, 5, 7])
4.0

Alternatively, one can update an existing mean, this requires only knowledge of the
total number of samples.

>>> new_mean(np.mean([1, 3, 5]), data=7, length=4)
4.0

	
maicos.lib.math.new_variance(old_variance: float [https://docs.python.org/3/library/functions.html#float] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], old_mean: float [https://docs.python.org/3/library/functions.html#float] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], new_mean: float [https://docs.python.org/3/library/functions.html#float] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], data: float [https://docs.python.org/3/library/functions.html#float] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], length: int [https://docs.python.org/3/library/functions.html#int]) → float [https://docs.python.org/3/library/functions.html#float] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate the variance of a timeseries iteratively.

The variance of a timeseries \(x_n\) can be calculated iteratively by using the
following formula:

\[S_n = S_n-1 + (n-1) * (x_n - \bar{x}_n-1)^2 / (n-1)\]

Here, \(\bar{x}_n\) is the mean of the timeseries up to the \(n\)-th value.

Floating point imprecision can lead to slight negative variances leading non defined
standard deviations. Therefore a negetaive variance is set to 0.

	Parameters:

	
	old_variance (float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The variance of the first n-1 samples.

	old_mean (float [https://docs.python.org/3/library/functions.html#float]) – The mean of the first n-1 samples.

	new_mean (float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The mean of the full n samples.

	data (float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The n-th value of the series.

	length (int [https://docs.python.org/3/library/functions.html#int]) – Length of the updated series, here called n.

	Returns:

	new_variance – Updated variance of the series of n values.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Examples

The data set [1, 5, 5, 1] has a variance of 4.0

>>> np.var([1, 5, 5, 1])
4.0

Knowing the total number of data points, this operation can be performed
iteratively.

>>> new_variance(
... old_variance=np.var([1, 5, 5]),
... old_mean=np.mean([1, 5, 5]),
... new_mean=np.mean([1, 5, 5, 1]),
... data=1,
... length=4,
...)
4.0

	
maicos.lib.math.scalar_prod_corr(a: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], b: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | None [https://docs.python.org/3/library/constants.html#None] = None, subtract_mean: bool [https://docs.python.org/3/library/functions.html#bool] = False) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Give the corr. function of the scalar product of two vector timeseries.

Arguments should be given in the form a[t, i], where t is the time variable along
which the correlation is calculated, and i indexes the vector components.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The first vector timeseries of shape (t, i).

	b (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The second vector timeseries of shape (t, i). If None [https://docs.python.org/3/library/constants.html#None], correlation with
itself is calculated.

	subtract_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], subtract the mean from the timeseries before calculating the
correlation.

	Returns:

	The correlation function of the scalar product of the vector timeseries.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.math.symmetrize(m: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], axis: None [https://docs.python.org/3/library/constants.html#None] | int [https://docs.python.org/3/library/functions.html#int] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]] = None, inplace: bool [https://docs.python.org/3/library/functions.html#bool] = False) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Symmeterize an array.

The shape of the array is preserved, but the elements are symmetrized with respect
to the given axis.

	Parameters:

	
	m (array_like) – Input array to symmetrize

	axis (int [https://docs.python.org/3/library/functions.html#int], tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int])) – Axis or axes along which to symmetrize over. The default, axis=None, will
symmetrize over all of the axes of the input array. If axis is negative it
counts from the last to the first axis. If axis is a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints,
symmetrizing is performed on all of the axes specified in the tuple [https://docs.python.org/3/library/stdtypes.html#tuple].

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – Do symmetrizations inplace. If False [https://docs.python.org/3/library/constants.html#False] a new array is returned.

	Returns:

	out – the symmetrized array

	Return type:

	array_like

Notes

symmetrize uses np.flip() for flipping the indices.

Examples

>>> A = np.arange(10).astype(float)
>>> A
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> symmetrize(A)
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])
>>> symmetrize(A, inplace=True)
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])
>>> A
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])

It also works for arrays with more than 1 dimensions in a general dimension.

>>> A = np.arange(20).astype(float).reshape(2, 10).T
>>> A
array([[0., 10.],
 [1., 11.],
 [2., 12.],
 [3., 13.],
 [4., 14.],
 [5., 15.],
 [6., 16.],
 [7., 17.],
 [8., 18.],
 [9., 19.]])
>>> symmetrize(A)
array([[9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5],
 [9.5, 9.5]])
>>> symmetrize(A, axis=0)
array([[4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5],
 [4.5, 14.5]])

	
maicos.lib.math.transform_cylinder(positions: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], origin: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], dim: int [https://docs.python.org/3/library/functions.html#int]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform positions into cylinder coordinates.

The origin of th coordinate system is at origin, the direction of the cylinder is
defined by dim.

	Parameters:

	
	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Cartesian coordinates (x,y,z)

	origin (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Origin of the new cylindrical coordinate system (x,y,z).

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Direction of the cylinder axis (0=x, 1=y, 2=z).

	Returns:

	Positions in cylinder coordinates (r, phi, z)

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.math.transform_sphere(positions: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], origin: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform positions into spherical coordinates.

The origin of the new coordinate system is at origin.

	Parameters:

	
	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Cartesian coordinates (x,y,z)

	origin (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Origin of the new spherical coordinate system (x,y,z).

	Returns:

	Positions in spherical coordinates (\(r\), phi, theta)

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib._cmath.compute_structure_factor(positions, dimensions, qmin, qmax, thetamin, thetamax, weights)

	Calculates scattering vectors and corresponding structure factors.

Use via from maicos.lib.math import compute_structure_factor

The structure factors are calculated according to

\[S(\boldsymbol{q}) =
 \left [\sum\limits_{k=1}^N w_j(q) \cos(\boldsymbol{qr}_j) \right]^2 +
 \left [\sum\limits_{k=1}^N w_j(q) \sin(\boldsymbol{qr}_j) \right]^2 \,.\]

where \(\boldsymbol{r}_j\) is the positions vector of particle \(k\),
\(\boldsymbol{q}\) is scattering vector and the \(w_j\) are optional
weights. The possible scattering vectors are determined by the given cell
dimensions.

Results are returned as arrays with three dimensions, where the index of each
dimensions referers to the Miller indices \(hkl\). Based on the Miller indices
and the returned length of the scattering vector the actual scattering vector can be
obtained by

\[q_{hkl} = \vert \boldsymbol{q} \vert \frac{2\pi}{L_{hkl}}\]

where \(\vert \boldsymbol{q} \vert\) are the returned lengths of the scattering vector and
\(L_{hkl}\) are the components of the simulation cell.

	Parameters:

	
	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – position array.

	dimensions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – dimensions of the cell.

	qmin (float [https://docs.python.org/3/library/functions.html#float]) – Starting scattering vector length (1/Å).

	qmax (float [https://docs.python.org/3/library/functions.html#float]) – Ending scattering vector length (1/Å).

	thetamin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal angle (°) between the scattering vectors and the z-axis.

	thetamax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal angle (°) between the scattering vectors and the z-axis.

	weights (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Atomic quantity whose \(S(\vert q \vert)\) we are computing. Provide an
array of 1 that has the same size as the postions, h.e
np.ones(len(positions)), for the standard structure factor.

	Returns:

	The length of the scattering vectors and the corresponding structure factors.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

General helper functions

Small helper and utilities functions that don’t fit anywhere else.

	
maicos.lib.util.DOC_DICT

	Dictionary containing the keys and the actual docstring used by maicos.lib.util.render_docs().

	
maicos.lib.util.DOI_LIST

	References associated with MAICoS

	
class maicos.lib.util.Unit_vector(*args, **kwargs)

	Bases: Protocol [https://docs.python.org/3/library/typing.html#typing.Protocol]

Protocol class for unit vector methods type hints.

	
maicos.lib.util.atomgroup_header(AtomGroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a string containing infos about the AtomGroup.

Infos include the total number of atoms, the including residues and the number of
residues. Useful for writing output file headers.

	Parameters:

	AtomGroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – The AtomGroup object containing the atoms.

	Returns:

	A string containing the AtomGroup information.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
maicos.lib.util.bin(a: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], bins: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Average array values in bins for easier plotting.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The input array to be averaged.

	bins (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array containing the indices where each bin begins.

	Returns:

	The averaged array values.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Notes

The “bins” array should contain the INDEX (integer) where each bin begins.

	
maicos.lib.util.charge_neutral(filter: str [https://docs.python.org/3/library/stdtypes.html#str]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Raise a Warning when AtomGroup is not charge neutral.

Class Decorator to raise an Error/Warning when AtomGroup in an AnalysisBase class is
not charge neutral. The behaviour of the warning can be controlled with the filter
attribute. If the AtomGroup’s corresponding universe is non-neutral an ValueError is
raised.

	Parameters:

	filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter type to control warning filter. Common values are: “error” or “default”
See warnings.simplefilter for more options.

	
maicos.lib.util.citation_reminder(*dois: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Prints citations in order to remind users to give due credit.

	Parameters:

	dois (list [https://docs.python.org/3/library/stdtypes.html#list]) – dois associated with the method which calls this. Possible dois are registered
in maicos.lib.util.DOI_LIST.

	Returns:

	cite – formatted citation reminders

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
maicos.lib.util.correlation_analysis(timeseries: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → float [https://docs.python.org/3/library/functions.html#float]

	Timeseries correlation analysis.

Analyses a timeseries for correlation and prints a warning if the correlation time
is larger than the step size.

	Parameters:

	timeseries (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array of (possibly) correlated data.

	Returns:

	corrtime – Estimated correlation time of timeseries.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
maicos.lib.util.get_center(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], compound: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Center attribute for an MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup].

This function acts as a wrapper for the
MDAnalysis.core.groups.AtomGroup.center() [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.center] method, providing a more
user-friendly interface by automatically determining the appropriate weights based
on the chosen binning method.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	compound ({"group", "segments", "residues", "molecules", "fragments"}) – The compound to be used in the center calculation. For example, "residue",
"segment", etc.

	Returns:

	The coordinates of the calculated center.

	Return type:

	np.ndarray

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the provided bin_method is not one of {"com", "cog", "coc"}.

	
maicos.lib.util.get_cli_input() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a proper formatted string of the command line input.

	Returns:

	A string representing the command line input in a proper format.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
maicos.lib.util.get_compound(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the highest order topology attribute.

The order is “molecules”, “fragments”, “residues”. If the topology contains none of
those attributes, an AttributeError is raised.

	Parameters:

	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	Returns:

	Name of the topology attribute.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – atomgroup is missing any connection information”

	
maicos.lib.util.maicos_banner(version: str [https://docs.python.org/3/library/stdtypes.html#str] = '', frame_char: str [https://docs.python.org/3/library/stdtypes.html#str] = '-') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Prints ASCII banner resembling the MAICoS Logo with 80 chars width.

	Parameters:

	
	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Version string to add to the banner.

	frame_char (str [https://docs.python.org/3/library/stdtypes.html#str]) – Character used to as framing around the banner.

	Returns:

	banner – formatted banner

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
maicos.lib.util.render_docs(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Replace all template phrases in the functions docstring.

Keys for the replacement are taken from in maicos.lib.util.DOC_DICT.

	Parameters:

	func (callable) – The callable (function, class) where the phrase old should be replaced.

	Returns:

	callable with replaced phrase

	Return type:

	Callable

	
maicos.lib.util.trajectory_precision(trajectory: ReaderBase [https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase], dim: int [https://docs.python.org/3/library/functions.html#int] = 2) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Detect the precision of a trajectory.

	Parameters:

	
	trajectory (MDAnalysis.coordinates.base.ReaderBase [https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase]) – Trajectory from which the precision is detected.

	dim ({2, 0, 1}) – Dimension along which the precision is detected.

	Returns:

	precision – Precision of each frame of the trajectory.

If the trajectory has a high precision, its resolution will not be detected, and
a value of 1e-4 is returned.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.util.unit_vectors_cylinder(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str], dim: int [https://docs.python.org/3/library/functions.html#int], pdim: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate cylindrical unit vectors in cartesian coordinates.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

	pdim ({"r", "z"}) – direction of the projection

	Returns:

	Array of the calculated unit vectors with shape (3,) for pdim=’z’ and shape
(3,n) for pdim=’r’. The length of n depends on the grouping.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.util.unit_vectors_planar(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], pdim: int [https://docs.python.org/3/library/functions.html#int]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate unit vectors in planar geometry.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	pdim ({0, 1, 2}) – direction of the projection

	Returns:

	the unit vector

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.util.unit_vectors_sphere(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], bin_method: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculate spherical unit vectors in cartesian coordinates.

	Parameters:

	
	ATOMGROUP_PARAMETER –

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"),
center of geometry ("cog"), and center of charge ("coc").

	Returns:

	Array of the calculated unit vectors with shape (3,n). The length of n
depends on the grouping.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
maicos.lib.util.unwrap_refgroup(original_class)

	Class decorator error if unwrap = False and refgroup != None.

Weighting functions

Weight functions used for spatial binned analysis modules.

	
maicos.lib.weights.density_weights(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], dens: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Weights for density calculations.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	dens ({"mass", "number", "charge"}) – density type to be calculated.

	Returns:

	1D array of calculated weights. The length depends on the grouping.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if grouping or dens parameter is not supported.

	
maicos.lib.weights.diporder_pair_weights(g1: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], g2: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], compound: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Normalized dipole moments as weights for general diporder RDF calculations.

	
maicos.lib.weights.diporder_weights(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], order_parameter: str [https://docs.python.org/3/library/stdtypes.html#str], get_unit_vectors: Unit_vector) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Weights for general diporder calculations.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –
	Order parameter to be calculated:
	
	"P0": total dipole moment projected on an axis

	"cos_theta": cosine of the dipole moment with an axis

	"cos_2_theta": squred cosine with an axis.

	get_unit_vectors (Callable) – Callable that returns unit vectors on which the projection is performed.
Returned unit_vectors can either be of shape (3,) or of shape (n, 3). For a
shape of (3,) the same unit vector is used for all calculations.

	
maicos.lib.weights.temperature_weights(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Weights for temperature calculations.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").

	Returns:

	1D array of calculated weights. The length depends on the grouping.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – Currently only works for grouping=’atoms’

	
maicos.lib.weights.velocity_weights(atomgroup: AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup], grouping: str [https://docs.python.org/3/library/stdtypes.html#str], vdim: int [https://docs.python.org/3/library/functions.html#int]) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Weights for velocity calculations.

The function normalises by the number of compounds.

	Parameters:

	
	atomgroup (MDAnalysis.core.groups.AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup]) – A AtomGroup [https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup] for which the calculations are
performed.

	grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) – Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in
the case where grouping="residues", "segments", "molecules" or
"fragments").
vdim : {0, 1, 2}
Dimension for velocity binning (x=0, y=1, z=1).

	Returns:

	1D array of calculated weights. The length depends on the grouping.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Tables

The module contains static lookup tables for atom typing etc.

The tables are dictionaries that are indexed by elements.

	
maicos.lib.tables.CM_parameters = {'Al': <maicos.lib.tables.CM_parameter object>, 'Ar': <maicos.lib.tables.CM_parameter object>, 'B': <maicos.lib.tables.CM_parameter object>, 'Be': <maicos.lib.tables.CM_parameter object>, 'Br': <maicos.lib.tables.CM_parameter object>, 'C': <maicos.lib.tables.CM_parameter object>, 'Ca': <maicos.lib.tables.CM_parameter object>, 'Cl': <maicos.lib.tables.CM_parameter object>, 'F': <maicos.lib.tables.CM_parameter object>, 'H': <maicos.lib.tables.CM_parameter object>, 'He': <maicos.lib.tables.CM_parameter object>, 'I': <maicos.lib.tables.CM_parameter object>, 'K': <maicos.lib.tables.CM_parameter object>, 'Kr': <maicos.lib.tables.CM_parameter object>, 'Li': <maicos.lib.tables.CM_parameter object>, 'Mg': <maicos.lib.tables.CM_parameter object>, 'N': <maicos.lib.tables.CM_parameter object>, 'Na': <maicos.lib.tables.CM_parameter object>, 'Ne': <maicos.lib.tables.CM_parameter object>, 'O': <maicos.lib.tables.CM_parameter object>, 'P': <maicos.lib.tables.CM_parameter object>, 'Rb': <maicos.lib.tables.CM_parameter object>, 'S': <maicos.lib.tables.CM_parameter object>, 'Se': <maicos.lib.tables.CM_parameter object>, 'Si': <maicos.lib.tables.CM_parameter object>, 'Xe': <maicos.lib.tables.CM_parameter object>}

	Cromer-Mann X-ray scattering factors computed from numerical
Hartree-Fock wave functions. See Acta Cryst. A 24 (1968) p. 321

	
maicos.lib.tables.atomtypes = {'AR': 'Ar', 'BR': 'Br', 'Br': 'Br', 'C': 'C', 'C*': 'C', 'C0': 'Ca', 'CA': 'C', 'CA2+': 'Ca', 'CB': 'C', 'CC': 'C', 'CCHL': 'C', 'CG2R51': 'C', 'CG2R53': 'C', 'CG2R61': 'C', 'CG311': 'C', 'CG321': 'C', 'CG324': 'C', 'CG331': 'C', 'CG334': 'C', 'CG3C51': 'C', 'CG3C52': 'C', 'CG3RC1': 'C', 'CH0': 'C', 'CH1': 'CH1', 'CH2': 'CH2', 'CH2r': 'CH2', 'CH3': 'CH3', 'CH4': 'CH4', 'CK': 'C', 'CL': 'Cl', 'CL-': 'Cl', 'CLA': 'C', 'CM': 'C', 'CMET': 'CH3', 'CN': 'C', 'CQ': 'C', 'CR': 'C', 'CR1': 'CH1', 'CT': 'C', 'CU': 'Cu', 'CU1+': 'Cu', 'CU2+': 'Cu', 'CV': 'C', 'CW': 'C', 'Cl': 'Cl', 'Cs': 'CS', 'DUM': 'DUM', 'F': 'Fe', 'FE': 'Fe', 'H': 'H', 'H1': 'H', 'H2': 'H', 'H3': 'H', 'H4': 'H', 'H5': 'H', 'HA': 'H', 'HC': 'H', 'HGA1': 'H', 'HGA2': 'H', 'HGA3': 'H', 'HGP1': 'H', 'HGR52': 'H', 'HGR53': 'H', 'HGR61': 'H', 'HO': 'H', 'HP': 'H', 'HS': 'H', 'HT': 'H', 'HW': 'H', 'HW_spc': 'H', 'HW_tip4p': 'H', 'HW_tip4pew': 'H', 'HW_tip5p': 'H', 'I': 'I', 'IB': 'Na', 'K': 'K', 'Li': 'Li', 'MCH3': 'DUM', 'MG': 'Mg', 'MG2+': 'Mg', 'MNH3': 'DUM', 'MW': 'DUM', 'N': 'N', 'N*': 'N', 'N2': 'N', 'N3': 'N', 'NA': 'N', 'NA+': 'Na', 'NB': 'N', 'NC': 'N', 'NE': 'NH', 'NG2R52': 'N', 'NL': 'NH3', 'NR': 'N', 'NT': 'NH2', 'NZ': 'NH2', 'Na': 'Na', 'O': 'O', 'O2': 'O', 'OA': 'O', 'OE': 'O', 'OG311': 'O', 'OH': 'O', 'OM': 'O', 'OMET': 'O', 'OS': 'O', 'OT': 'O', 'OW': 'O', 'OW_spc': 'O', 'OW_tip4p': 'O', 'OW_tip4p2005': 'O', 'OW_tip4pew': 'O', 'OW_tip5p': 'O', 'P': 'P', 'Rb': 'Rb', 'S': 'S', 'SH': 'Si', 'VW': 'DUM', 'ZN2+': 'Zn', 'Zn': 'Zn'}

	Translation of
MDAnalysis.AtomGroup.types [https://docs.mdanalysis.org/stable/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Atomtypes] to
chemical elements.

Explanations

This section provides the theory behind some of the most complex analysis modules and
explains the general design of MAICoS. Its purpose is to provide more clarity and
understanding of what MAICoS is all about.

	General design

	Dielectric constant measurement

	Small-angle X-ray scattering

	Pair distribution functions

General design

Foundation

[image: UML chart of the MAICoS core classes]MAICoS analysis modules are built on top of stacked Core classes as shown in the
UML chart above. For spatial dependent analysis, these are split into the geometries:

	Planar classes,

	Cylinder classes,

	and Sphere classes.

Each sub class inherits attributes and provides geometry-specific methods and
attributes. The flow chart is shown in the figure above. The foundation for all these
classes is maicos.core.base.AnalysisBase, inherited and extended from
MDAnalysis.analysis.base.AnalysisBase [https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase]. maicos.core.base.AnalysisBase
takes case of the general aspects of each analysis, which will be discussed in detail
below:

	Atom Selection - MAICoS builds on top of the MDAnalysis Universe and atom
selection system, therefore all analysis modules work only on subsets of the whole
simulation. This allows investigating different species components individually, for
example splitting the contributions of solvent and solute to a single observable.
Moreover, many MAICoS analysis modules are able to process several atom selections
from one simulation within one analysis run by providing a list [https://docs.python.org/3/library/stdtypes.html#list] of atom
selections. This reduces I/O loads and operations and gains a speed up for the
analysis.

	Translational coordinate transformations and unit cell wrapping - MAICoS works
with a reference structure denoted by refgroup which center of mass (com for short)
serves as the coordinate origin for every analysis. MDAnalysis’s cell dimension and
coordinates range from 0 to L where L is the dimension of the simulation box.
Therefore, MAICoS defines the origin at the center of the simulation cell.

Within each frame of the analysis, the refgroup’s com is translated to the origin
and all coordinates are wrapped into the primary unit cell. Additionally, it is
possible to unwrap molecules afterwards since some analysis require whole molecules
(e.g. dielectric). With this centering, the investigation of systems that translate
over time is made possible, such as for example soft interfaces or moving molecules.
However, users are not forced to give a refgroup. If no such reference structure is
given, MAICoS takes the frame specific center of the simulation cell as the origin.

User-provided ranges for spatial analysis are always with respect to the refgroup
and not in absolute box coordinates. For example, a 1-dimensional planar analysis
ranging from -2 (Å) to 0 considers atoms on the left half space of the refgroup.

	Trajectory iteration - Each module implements an initialization, a prepare, a
single frame and a conclude method. The AnalysisBase will perform an analysis that
is based on these provided methods. It is possible to provide an initial and final
frame as well as a step size or to analyse individual frames.

	Time averaging of observables - For observables that have to be time-averaged,
maicos.core.base.AnalysisBase provides a frame dictionary. Each key has to
be updated within the (private) _single_frame method and the mean and the variance
of each observable will be provided within a mean and a var dictionary. Each
key name within these two dictionaries is the same as within the frame dictionary.

	On-the-fly output - MAICoS is able to update analysis results during the
analysis. This can be particularly useful for long analysis providing a way to check
the correctness of analysis parameters during the run.

	Correlation time estimation - For the calculation of the mean and the standard
deviation, MAICoS assumes uncorrelated data to compute reasonable error estimates.
Since users may not know the correlation time within their simulation, MAICoS
estimates correlation times for representative observables and warns users if their
averages are obtained from correlated data. The correlation analysis gets handled by
maicos.core.base.AnalysisBase if the single_frame method of the used class
returns a value to perform the analysis on. You can find general info about which
class uses which observable for the analysis below, and more detailed information in
the Reference guides. The correlation time gets calculated using the
correlation time function. The generation
of warnings for the users gets handled by the correlation analysis
function.

For dielectric analysis, MAICoS uses the total dipole moment parallel to the
direction of the analysis. For other spatial-dependant analysis, the correlation time
is estimated from the central bin of the refgroup; in the center of the simulation
cell. This translates to the middle bin of the profile for planar analyses and the
first bin for cylindrical or spherical profiles.

Spatial Dependent Analysis

Spatial dependent analyses are crucial for interfacial and confined systems. Based on
the AnalysisBase in combination with a maicos.core.base.ProfileBase class,
MAICoS provides intermediate Core classes for the three main geometries:

	maicos.core.planar.PlanarBase,

	maicos.core.cylinder.CylinderBase,

	and maicos.core.sphere.SphereBase.

These modules take care of the coordinate transformations, of the spatial boundaries,
and of the spatial resolution of the analysis.

A design concept of MAICoS for spatial analysis is that the user always provides the
spatial resolution via the bin_width parameter rather than a number of bins.
Therefore, the same analysis code is easily transferable to different simulation sizes
without additional considerations about the spatial resolution.

Based on the three geometric base classes, three corresponding high level classes are
provided:

	maicos.core.planar.ProfilePlanarBase,

	maicos.core.cylinder.ProfileCylinderBase,

	and maicos.core.sphere.ProfileSphereBase.

When developing a new analysis class based on one of theses three classes, only a single
weight function has to be provided. All current Weighting functions are
documented. For instance, the atomic weight could be the masses, thus resulting in mass
density profiles as done in DensityPlanar, atomic or molecular velocities as for
VelocityPlanar, or the dipolar orientations as used by the DiporderPlanar
class.

More details on each base class are given in the API Documentation. For detailed
information on the physical principles of each module consider the following sections.

Dielectric constant measurement

Dielectric Response of Homogeneous, Isotropic Fluids

The linear dielectric response of a material relates the displacement field \(D\) to
the electric field \(E\), which in the isotropic, homogenous case can be written as
(in SI units)

\[\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}\]

where \(\varepsilon_0\) is the vacuum permittivity, and \(\varepsilon\) is the
dielectric constant of the insulating medium.

One can relate the dielectric constant of a material to the fluctuations of the dipole
moment of a sub-sample even without any perturbation by an external field. Relations of
this sort have been known since the 1930s and follow from the fluctuation-dissipation
theory [1]. Depending on the boundary
conditions, this equation takes different forms, however, the most common boundary
conditions of molecular dynamics simulations are tin-foil boundary conditions in
conjunction with an Ewald-summation type approach. In this case, we get for a bulk
material

\[\varepsilon = 1 + \frac{\langle M^2 \rangle - \langle M \rangle^2}
 {3 \varepsilon_0 V k _{\mathrm{B}} T}\]

where \(M\) is the dipole moment of the sample, \(V\) is its volume, \(k
_\mathrm{B}\) is the Boltzmann constant and \(T\) is the temperature.

The dipole moment is defined by

\[M = \sum_i \mathbf{r}_i q_i\]

where \(\mathbf{r}_i\) is the position of the \(i\)-th particle and \(q_i\)
is the charge of the \(i\)-th particle. Notably, this allows the calculation of the
dielectric response from equilibrium simulations without the need to explicitly define
an external field in simulations.

This analysis - valid for isotropic and homogeneous systems - is implemented in
MDAnalysis.analysis.dielectric.DielectricConstant [https://docs.mdanalysis.org/stable/documentation_pages/analysis/dielectric.html#MDAnalysis.analysis.dielectric.DielectricConstant] and can directly be applied
to trajectories of homogeneous systems.

Dielectric Response of Fluids at Interfaces and in Confinement

Electrostatic Theory

The relationship between the electric field and the dielectric response shown above is
only valid for isotropic homogeneous systems, where the properties of the material are
the same throughout. However, there is also a need for calculating the dielectric
response of anistropic inhomogeneous systems. For instance, fluids confined in a porous
material are of great importance for many technological processes, such as energy
storage devices like batteries and capacitors. In these devices, a nano-porous electrode
is used to increase the surface area and improve the capacity of the device. Another
common example are catalysts, where an increased surface area is used to increase the
rate of a chemical reaction, and thus porous catalysts are often utilized.

The presence of interfaces alters the dielectric response of the fluid in two ways.
First, the response is not isotropic anymore, but depends on the orientation of the
electric field. Second, the response varies with the distance from the surface of the
porous material, i.e., it becomes inhomogeneous.

In the following discussion, we will focus on pores with planar symmetry, also known as
“slit pores” and implemented in maicos.DielectricPlanar. However, similar
concepts apply to other types of pore geometries, such as ones with cylindrical or
spherical symmetries implemented in maicos.DielectricCylinder and
maicos.DielectricSphere.

Without loss of generality, we will assume that the pore is aligned along the
\(z\)-axis.

The non-local, anisotropic, linear dielectric response of a fluid can generally be
written as [2]

\[D(\mathbf{r}) = \varepsilon_0 \int_V \mathrm{d}^3 r'
 \varepsilon(\mathbf{r}, \mathbf{r}') E(\mathbf{r}')\]

where \(\varepsilon(\mathbf{r}, \mathbf{r}')\) is the dielectric tensor, which
describes how the dielectric response of the fluid at position \(\mathbf{r}\) is
affected by the electric field \(E(\mathbf{r}')\) throughout the volume \(V\) of
the fluid. The convolution integral accounts for the non-local influences of the fluid
response at other locations.

In planar symmetry, we can simplify the above expression further, because the Maxwell
relations give

\[\nabla \times \mathbf{E} = 0\]

in the absence of external magnetic fields. Because of the planar symmetry, we know that
the \(\mathbf{E}\) only varies with respect to \(z\). Hence, the above gives
\(\partial_z E_y = \partial_z E_x = 0\), implying that the parallel components of
the electric field do not vary with \(z\).

Thus, we can simplify the anisotropic, non-linear equation above in the parallel case to

\[D _\parallel = \epsilon_0 E_\parallel \int \mathrm{d}z'
\epsilon_\parallel(z, z') =: \epsilon_0 \epsilon_\parallel(z) E_\parallel\]

where the marginal integration of \(\varepsilon_\parallel (\mathbf{r},
\mathbf{r}')\) defines the dielectric profile \(\varepsilon_\parallel(z)\). It is
important to note that this derivation starts with non-local assumptions and is exact in
the case of planar geometries discussed here (similar derivations apply also for
cylindrical and spherical symmertries). Thus, \(\varepsilon_\parallel(z)\) fully
captures the non-locality of the confined fluid’s response and does not require
additional assumptions.

In the absence of “free charges” we can use the macroscopic Maxwell equation

\[\nabla \cdot \mathbf{D} = 0\]

to derive the perpendicular dielectric profile.

Warning

This requires that no free charges are used in simulations, which
means that no ions can be included in simulations. This is a common pitfall
and leads to a wrong analysis.

The above equation gives us the important relation of \(\partial_z \mathbf{D}_z =
0\), which implies that the perpendicular components of the displacement field do not
vary with \(z\). Thus, if we start with the inverse dielectric response, defined as

\[E(z) = \varepsilon_0^{-1} \int \mathrm{d} z' \varepsilon^{-1}(z, z') D(z')\]

where \(\varepsilon^{-1}(z, z')\) is the matrix inverse of the dielectric tensor.
Similar to above, we use the fact that \(D\) does not vary with \(z\) and
simplify

\[E_\perp = \epsilon_0^{-1} D_\perp \int \mathrm{d}z'
 \epsilon_\perp^{-1}(z, z') =: \epsilon_0^{-1}
 \epsilon_\perp^{-1}(z) D_\perp\]

where the marginal integration of \(\varepsilon_\perp^{-1} (\mathbf{r},
\mathbf{r}')\) defines the inverse dielectric profile \(\varepsilon_\perp^{-1}(z)\).

In summary, if one has no magnetic fields and no free charges, the dielectric
profiles \(\varepsilon^{-1}_\bot (z)\) and \(\varepsilon_\parallel(z)\) fully
define the linear, anisotropic, non-local response of a system in planar confinement.

Fluctuation-Dissipation Theorem

As was briefly discussed for the homogenous case, the dielectric response of a system
can be calculated from equilibrium simulations without the need to explicitly define an
external field in simulations, using a fluctuation dissipation theorem. This can be
derived by identifying the linear response under consideration, in this case the
dielectric response to a derivative of the expected value of an observable, in this case
the polarization density. The expectation value is calculated using statistical
mechanics. One can then show [3]
[2]
[4] that the dielectric response formalism
is given by

\[\epsilon_\parallel(z) = 1 + \frac{\langle m_\parallel(z) M_\parallel \rangle
 - \langle m_\parallel (z) \rangle \langle M_\parallel
 \rangle}{\epsilon_0 k_\mathrm{B}T}\]

for the parallel dielectric profile, and

\[\epsilon_\perp^{-1}(z) = 1 - \frac{\langle m_\perp(z) M_\perp \rangle
 - \langle m_\perp (z) \rangle \langle M_\perp \rangle}
 {\epsilon_0 k_\mathrm{B}T},\]

for the inverse perpendicular dielectric profile.

Note that we still need to define how to calculate \(m_\parallel(z)\) and
\(m_\perp(z)\). For the perpendicular polarization density, we have
[2]

\[m_\perp (z) = - \int^z _0 \mathrm{d}z' \rho(z').\]

For the parallel case, we have to derive the lateral component of the polarization
density as a function of the coordinate \(z\). This can be done by introducing
multiple virtual cuts perpendicular to any lateral axis, such as the \(x\) or
\(y\) axis [2]
[4]. During this step one has to take care
to only cut molecules along this cutting plane, which requires careful treatment of the
periodic boundary conditions commonly employed in simulations. Identifying the
(non-zero) total charge on one side of the cut with the surface charge along the plane
of the virtual cut via Gauss’ theorem we can integrate out the dependency of the lateral
axis of the cut and average over multiple such cuts. This gives a good estimate for the
average surface charge density \(\sigma(z)\) w.r.t the coordinate \(z\).
Finally, we can identify

\[m_\parallel (z) = \mp \sigma (z).\]

Boundary Conditions

The above equations for \(\varepsilon _\parallel (z)\) and \(\varepsilon
_\perp^{-1} (z)\) are derived under 2d periodicity. In simulations, this entails using
periodic boundary conditions only in the \(x\) and \(y\) directions. In most of
the typically employed simulation codes, electrostatics are calculated using a
Ewald-summation type approach. This includes direct Ewald sums or the faster meshed
Ewald sums (such as P3M, and PME). However, in their usual formulation these codes
calculate 3d-periodic systems and thus do not meet the assumptions of the derivation
shown above.

In order to use the above, one can use the 2d Ewald sum or corrections thereof, such as
the correction of Yeh and Berkovitz [5] or the
ELC [6].

However, one can also correct for the 3d electrostatics of an uncorrected Ewald-sum in
the fluctuation dissipation formalism directly as shown in refs.
[3]
[4]

For tin-foil boundary conditions, one gets
[4]

\[\epsilon_\perp^{-1} (z) = 1 - \frac{\langle m_\perp(z) M_\perp\rangle
- \langle m_\perp(z)\rangle \langle M_\perp \rangle}{\epsilon_0
k_{\text{B}}T + C_\perp/V},\]

where \(C_\perp = \int \mathrm{d} m_\perp(z)\).

Note, that a very close formula [3]
can also be derived for arbitrary boundary conditions at infinity, which some
simulation codes can also utilize. As most simulations nowadays are performed using
tin-foil boundary conditions, MAICoS does not provide these special cases and we
do not recommend that simulations for the calculation of dielectric profiles
are performed with other boundary conditions.

Note

The above equation reduces to the correct 2d periodic system if one
includes an explicit vacuum layer in the \(z\) direction of infinite
(sufficiently large) size, such that the influence between periodic images
over the \(z\) direction can be approximated as a dipole interaction.
This approach is analogous to the Yeh and Berkovitz correction
[5] and
may be used to calculate the dielectric profiles for physical systems with
2d-symmetry when corrections are not available. In these situations, we
recommend to use a padding vacuum layer such that the system is 3x the
physical system size in \(z\) direction.

However, there are systems which truly are 3d-periodic, such as stacks of lipid
membranes. In these cases, one has to also use the above formula which includes the
dipole corrections, but only simulate the physical system, without a padding vacuum
layer.

The correction for 3d periodic systems with tin-foil boundary conditions can be
turned on using the parameter is_3d.

References

[1]
John G. Kirkwood. The Dielectric Polarization of Polar Liquids. J. Chem. Phys., 7(10):911–919, October 1939. doi:10.1063/1.1750343 [https://doi.org/10.1063/1.1750343].

[2]
(1,2,3,4)
Douwe Jan Bonthuis, Stephan Gekle, and Roland R. Netz. Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for Capacitance, Hydration Interaction and Ion Adsorption. Langmuir, 28(20):7679–7694, 2012. doi:10.1021/la2051564 [https://doi.org/10.1021/la2051564].

[3]
(1,2,3)
Harry A. Stern and Scott E. Feller. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation. The Journal of Chemical Physics, 118(7):3401–3412, February 2003. doi:10.1063/1.1537244 [https://doi.org/10.1063/1.1537244].

[4]
(1,2,3,4)
Alexander Schlaich, Ernst W. Knapp, and Roland R. Netz. Water Dielectric Effects in Planar Confinement. Phys. Rev. Lett., 117(4):048001, July 2016. doi:10.1103/PhysRevLett.117.048001 [https://doi.org/10.1103/PhysRevLett.117.048001].

[5]
(1,2)
In-Chul Yeh and Max L. Berkowitz. Ewald summation for systems with slab geometry. The Journal of Chemical Physics, 111(7):3155–3162, August 1999. doi:10.1063/1.479595 [https://doi.org/10.1063/1.479595].

[6]
Axel Arnold, Jason de Joannis, and Christian Holm. Electrostatics in periodic slab geometries. I. The Journal of Chemical Physics, 117(6):2496–2502, July 2002. doi:10.1063/1.1491955 [https://doi.org/10.1063/1.1491955].

Small-angle X-ray scattering

MD Simulations often complement conventional experiments, such as X-ray crystallography,
Nuclear Magnetic Resonance (NMR) spectroscopy and Atomic-Force Microscopy (AFM). X-ray
crystallography is a method by which the structure of molecules can be resolved. X-rays
of wavelength 0.1 to 100 Å are scattered by the electrons of atoms. The intensities of
the scattered rays are often amplified using by crystals containing a multitude of the
studied molecule positionally ordered. The molecule is thereby no longer under
physiological conditions. However, the study of structures in a solvent should be done
under physiological conditions (in essence, this implies a disordered, solvated fluid
system); therefore X-ray crystallography does not represent the ideal method for such
systems. Small-Angle X-ray Scattering (abbreviated to SAXS) allows for measurements of
molecules in solutions. With this method the shape and size of the molecule and also
distances within it can be obtained. In general, for larger objects, the information
provided by SAXS can be converted to information about the object’s geometry via the
Bragg-Equation

\[n \cdot \lambda = 2 \cdot d \cdot \sin(\theta)\]

with \(n \in \mathbb{N}\), \(\lambda\) the wavelength of the incident wave,
\(d\) the size of the diffracting object, and \(\theta\) the scattering angle.
For small angles, \(d\) and \(\theta\) are approximately inversely proportional
to each other, which means larger objects scatter X-rays at smaller angles.

Experiments

The measured quantity in SAXS experiments is the number of elastically scattered photons
as a function of the scattering angle \(2\theta\), i.e. the intensity of the
scattered rays across a range of small angles. The general set-up of a SAXS experiment
is shown in figure below.

[image: Setup of a SAXS]
[image: Setup of a SAXS]
The experiments are carried out by placing the sample of interest in a highly
monochromatic and collimated (parallel) X-ray beam of wavelength \(\lambda\). When
the incident rays with wave vector \(\boldsymbol{k}_i\) reach the sample they
scatter. The scattered rays, with wave vector \(\boldsymbol{k}_s\), are recorded by
a 2D-detector revealing a diffraction pattern.

Since the scattering agents in the sample are electrons, X-Ray diffraction patterns
reveal the electron density. Since the scattering is elastic, the magnitudes of the
incident and scattered waves are the same: \(|\boldsymbol{k}_i| =
|\boldsymbol{k}_s| = 2\pi/\lambda\). The scattering vector is \(\boldsymbol{q} =
\boldsymbol{k}_s - \boldsymbol{k}_i\) with a magnitude of \(q = |\boldsymbol{q}| =
4\pi \sin(\theta)/\lambda\). The structure factor can be obtained from the intensity of
the scattered wave, \(I_s(\boldsymbol{q})\), and the correspnding form factor
\(f (q)\), which involves a frourier transform of the element-specific local
electron density and thus determines the amplitude of the scattered wave of a single
element.

Simulations

In simulations, the structure factor and scattering intensities
\(S(\boldsymbol{q})\) can be extracted directly from the positions of the particles.
maicos.Saxs calculates these factors. The calculated scattering intensities can
be directly compared to the experimental one without any further processing. In the
following we derive the essential relations. We start with the scattering intensity
which is expressed as

\[I_s(\boldsymbol{q}) = A_s(\boldsymbol{q}) \cdot A_s^*(\boldsymbol{q}) \,,\]

with the amplitude of the elastically scattered wave

\[A_s(\boldsymbol{q}) = \sum\limits_{j=1}^N f_j(q) \cdot e^{-i\boldsymbol{qr}_j} \,,\]

where \(f_j(q)\) is the element-specific form factor of atom \(j\) and
\(\boldsymbol{r}_j\) the position of the \(j\) th atom out of \(N\) atoms.

The scattering intensity can be evaluated for wave vectors \(\boldsymbol q = 2 \pi
(L_x n_x, L_y n_y, L_z n_z)\), where \(n \in \mathbb N\) and \(L_x, L_y, L_z\)
are the box lengths of cubic cells.

Note

maicos.Saxs can analyze any cells by mapping coordinates back onto cubic
cells.

The complex conjugate of the amplitude is

\[A_s^*(\boldsymbol{q}) = \sum\limits_{j=1}^N f_j(q) \cdot e^{i\boldsymbol{qr}_j} \,.\]

The scattering intensity therefore can be written as

\[I_s (\boldsymbol{q}) = \sum\limits_{j=1}^N f_j(q) e^{-i\boldsymbol{qr}_j}
 \cdot \sum\limits_{k=1}^N f_k(q) e^{i\boldsymbol{qr}_k} \,.\]

With Euler’s formula \(e^{i\phi} = \cos(\phi) + i \sin(\phi)\) the intensity is

\[I_s (\boldsymbol{q}) = \sum\limits_{j=1}^N f_j(q) \cos(\boldsymbol{qr}_j) - i \sin(\boldsymbol{qr}_j)
 \cdot \sum\limits_{k=1}^N f_k(q) \cos(\boldsymbol{qr}_k) + i \sin(\boldsymbol{qr}_k) \,.\]

Multiplication of the terms and simplifying yields the final expression for the
intensity of a scattered wave as a function of the wave vector and with respect to the
particle’s form factor

\[I_s (\boldsymbol{q}) = \left[\sum\limits_{j=1}^N f_j(q) \cos(\boldsymbol{qr}_j) \right]^2 +
 \left[\sum\limits_{j=1}^N f_j(q) \sin(\boldsymbol{qr}_j) \right]^2 \,.\]

For systems containing only one kind of atom the structure factor is connected to the
scattering intensity via

\[I_s (\boldsymbol{q}) = [f(q)]^2 S(\boldsymbol{q}) \,.\]

For any system the structure factor can be written as

\[S(\boldsymbol{q}) =
 \left\langle \frac{1}{N}\sum\limits_{j=1}^N \cos(\boldsymbol{qr}_j) \right \rangle^2 +
 \left\langle \frac{1}{N} \sum\limits_{j=1}^N \sin(\boldsymbol{qr}_j) \right \rangle^2 \,.\]

The limiting value \(S(0)\) for \(q \rightarrow 0\) is connected to the
isothermal compressibility [1] and the element-specific
form factors \(f(q)\) of a specific atom can be approximated with

\[f(\sin\theta/\lambda) = \sum_{i=1}^4 a_i e^{-b_i \sin^2\theta/\lambda^2} + c \,.\]

Expressed in terms of the scattering vector we can write

\[f(q) = \sum_{i=1}^4 a_i e^{-b_i q^2/(4\pi)^2} + c \,.\]

The element-specific coefficients \(a_{1,\dots,4}\), \(b_{1,\dots,4}\) and
\(c\) are documented [2].

Connection of the structure factor to the radial distribution function

If the system’s structure is determined by pairwise interactions only, the density
correlations of a fluid are characterized by the pair distribution function

\[g(\boldsymbol r, \boldsymbol r^\prime) =
 \frac{\langle \rho^{(2)}(\boldsymbol r, \boldsymbol r^\prime) \rangle}
 {\langle \rho(\boldsymbol r) \rangle \langle \rho(\boldsymbol r\prime) \rangle}
\,,\]

where \(\rho^{(2)}(\boldsymbol r, \boldsymbol r\prime) = \sum_{i,j=1, i\neq j}^{N}
\delta (\boldsymbol r - \boldsymbol r_i) \delta (\boldsymbol r - \boldsymbol r_j)\) and
\(\rho(\boldsymbol r) = \sum_{i=1}^{N} \delta (\boldsymbol r - \boldsymbol r_i)\)
are the two- and one-particle density operators.

For a homogeneous and isotropic system, \(g(r) = g(\boldsymbol r, \boldsymbol
r^\prime)\) is a function of the distance \(r =|\boldsymbol r - \boldsymbol
r^\prime|\) only and is called the radial distribution function (RDF). As explained
above, scattering experiments measure the structure factor

\[S(\boldsymbol q) = \left \langle \frac{1}{N} \sum_{i,j=1}^N
 \exp(-i\boldsymbol q \cdot [\boldsymbol r_i - \boldsymbol r_j]) \right \rangle
\,,\]

which we here normalize only by the number of particles \(N\). For a homogeneous and
isotropic system, it is a function of \(q = |\boldsymbol q|\) only and related to
the RDF by Fourier transformation (FT)

\[S^{FT}(q) = 1 + 4 \pi \rho \int_0^\infty \mathrm{d}r r \frac{\sin(qr)}{q} (g(r) - 1) \,,\]

which is another way compared for the direct evaluation from trajectories which was
derived above. In general this can be as accurate as the direct evaluation if the
RDF implementation works for non-cubic cells and is not limited to distances
\(r_\mathrm{max} = L/2\), see [3] for details.
However, in usual implementation the RDF can only be obtained until
\(r_\mathrm{max} = L/2\) which leads to a range of \(q >
q_\mathrm{min}^\mathrm{FT} = 2\pi / r_\mathrm{rmax} = 4 \pi /L\). This means that the
minimal wave vector that can be resolved is a factor of 2 larger compared compared to
the direct evaluation, leading to “cutoff ripples”. The direct evaluation should
therefore usually be preferred [4].

To compare the RDF and the structure factor you can use
maicos.lib.math.compute_rdf_structure_factor(). For a detailed example take
a look at Small-angle X-ray scattering.

References

[1]
Jean-Pierre Hansen and Ian. R. McDonald. Theory of Simple Liquids. Elsevier / Academic Press, 3rd ed edition, 2006. ISBN 9780080455075.

[2]
E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed. edition edition, January 2004. ISBN 978-1-4020-1900-5.

[3]
Johannes Zeman, Svyatoslav Kondrat, and Christian Holm. Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20):204501, November 2021. doi:10.1063/5.0069340 [https://doi.org/10.1063/5.0069340].

[4]
Felix Sedlmeier, Dominik Horinek, and Roland R. Netz. Spatial Correlations of Density and Structural Fluctuations in Liquid Water: A Comparative Simulation Study. J. Am. Chem. Soc., 133(5):1391–1398, February 2011. doi:10.1021/ja1064137 [https://doi.org/10.1021/ja1064137].

Pair distribution functions

The pair distribution function describes the spatial correlation
between particles.

Two-dimensional (planar) pair distribution function

Here, we present the two-dimensional pair distribution function
\(g_{\text{2d}}(r)\), which restricts the distribution to
particles which lie on the same surface
\(S_\xi\).

Let \(g_1\) be the group of particles which are centered, and \(g_2\) be
the group of particles whose density around a \(g_1\) particle is
calculated.
Furthermore, we define a parametric surface \(S_\xi\) as a function of
\(\xi\),

\[S_\xi = \{ \mathbf{r}_{\xi} (u, v) |
u_{\text{min}} < u < u_{\text{max}}, v_{\text{min}} < v < v_{\text{max}} \}\]

which consists of all points \(\mathbf{r}_\xi\). By varying
\(u, v\) we can reach all points on one surface \(\xi\). Let us
additionally consider a circle on that plane \(S_{i, r}\) with radius
\(r\) around atom \(i\) given by

\[S_{i, r} = \{ \mathbf{r}_{i, r} | \; || (\mathbf{r}_{i, r}
- \mathbf{x_i} || = r) \land (\mathbf{r}_{i, r} \in S_{\xi, i}) \}\]

where \(S_{\xi, i}\) is the plane in which atom \(i\) lies.

Then the two-dimensional pair distribution function is

\[g_{\text{2d}}(r) = \left \langle \sum_{i}^{N_{g_1}}
\frac{1}{L(r, \xi_i)}
\frac{\sum_{j}^{N_{g_2}} \delta(r - r_{ij}) \delta(\xi_{ij})}
{\vert \vert \frac{\partial \mathbf{f}_i}{\partial r} \times
\frac{\partial \mathbf{f}_i}{\partial \xi} \vert \vert _{\phi = \phi_j}}
\right \rangle\]

where \(L(r, \xi_i)\) is the contour length of the circle \(S_{i, r}\).
\(\mathbf{f}_i(r, \gamma, \phi)\) is a parametrization of the
circle \(S_{i, r}\).

Discretized for computational purposes we consider a volume
\(\Delta V_{\xi_i}(r)\), which is bounded by the surfaces
\(S_{\xi_i - \Delta \xi}\), \(S_{\xi_i + \Delta \xi}\) and
\(S_{r - \frac{\Delta r}{2}}, S_{r + \frac{\Delta r}{2}}\). Then our
two-dimensional pair distribution function is

\[g_{\text{2d}}(r) = \left \langle
\frac{1}{N_{g_1}} \sum_i^{N_{g_1}}
\frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{\xi_i}(r)}
{\Delta V_{\xi_i}(r)}
\right \rangle\]

Derivation

Let us introduce cylindrical coordinates \(r, z, \phi\) with the origin at the
position of atom \(i\).

\[\begin{split}\begin{aligned}
x &= r \cdot \cos \phi \\
y &= r \cdot \sin \phi \\
z &= z \\
\end{aligned}\end{split}\]

Then the two-dimensional pair distribution is given by

\[g_{\text{2d}}(r, z=0) = \left \langle \sum_{i}^{N_{g_1}}
\frac{1}{2 \pi r}
\sum_{j}^{N_{g2}} \delta(r - r_{ij}) \delta(z_{ij})
\right \rangle\]

where we have followed the general derivations given above.

For discretized calculation we count the number of atoms per ring as illustrated below

[image: Sketch of the discretization][image: Sketch of the discretization]The sketch shows an atom \(i\) from group \(g_1\) at the origin in blue.
Around the atom a ring volume with average distance \(r\) from atom i
is shaded in light red.
Atoms \(j\) from group \(g_2\) are counted in this volume.

One-dimensional (cylindrical) pair distribution functions

Here, we present the one-dimensional pair distribution functions
\(g_{\text{1d}}(\phi)\) and \(g_{\text{1d}}(z)\), which restricts the
distribution to particles which lie on the same cylinder along the angular and axial
directions respectively.

Let \(g2\) be the group of particles whose density around a \(g1\) particle is
to be calculated and let \(g1, g2\) lie in a cylinderical coordinate
system \((R, z, \phi)\).

Then the angular pair distribution function is

\[g_{\text{1d}}(\phi) = \left \langle \sum_{i}^{N_{g_1}}
\sum_{j}^{N_{g2}} \delta(\phi - \phi_{ij}) \delta(R_{ij}) \delta(z_{ij})
\right \rangle\]

And the axial pair distribution function is

\[g_{\text{1d}}(z) = \left \langle \sum_{i}^{N_{g_1}}
\sum_{j}^{N_{g2}} \delta(z - z_{ij}) \delta(R_{ij}) \delta(\phi_{ij})
\right \rangle\]

Discretized for computational purposes we consider a volume
\(\Delta V_{z_i,R_i}(\phi)\), which is bounded by the surfaces
\(S_{z_i - \Delta z}\), \(S_{z_i + \Delta z}\),
\(S_{R_i - \Delta R}\), \(S_{R_i + \Delta R}\) and
\(S_{\phi - \frac{\Delta \phi}{2}}, S_{\phi + \frac{\Delta \phi}{2}}\). Then our
the angular pair distribution function is

\[g_{\text{1d}}(\phi) = \left \langle
\frac{1}{N_{g_1}} \sum_i^{N_{g_1}}
\frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{z_i,R_i}(\phi)}
{\Delta V_{z_i,R_i}(\phi)}
\right \rangle\]

Similarly,

\[g_{\text{1d}}(z) = \left \langle
\frac{1}{N_{g_1}} \sum_i^{N_{g_1}}
\frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{\phi_i,R_i}(z)}
{\Delta V_{\phi_i,R_i}(z)}
\right \rangle\]

Developer documentation

Getting involved

Contribution via merge requests are always welcome. Source code is available from
GitLab [https://gitlab.com/maicos-devel/maicos/]. Before submitting a merge request, please read the developer documentation [https://maicos-devel.gitlab.io/maicos/devdoc]
and open an issue to discuss your changes. Use only the main branch for submitting
your requests.

By contributing to MAICoS, you accept and agree to the following terms and conditions
for your present and future contributions submitted to MAICoS. Except for the license
granted herein to MAICoS and recipients of software distributed by MAICoS, you reserve
all right, title, and interest in and to your contributions.

Getting started

To help with developing start by installing the development dependencies. Our continuous
integration pipeline is based on Tox [https://tox.readthedocs.io/en/latest/]. So you need to install tox first

pip install tox
or
conda install -c conda-forge tox

Then go to the MAICoS develop project [https://gitlab.com/maicos-devel/maicos] page, hit the Fork button and clone your
forked branch to your machine.

git clone git@gitlab.com:your-user-name/maicos.git

Now you have a local version on your machine which you can install by

cd maicos
pip install -e .

This install the package in development mode, making it importable globally and allowing
you to edit the code and directly use the updated version.

Useful developer scripts

The following scripts can be useful to developers:

	./developer/clean_dist_check.sh: Clean dist files. Useful before/after tox -e
build

	./developer/clean_tempfiles.sh: Remove all generated files related to Python,
including all build caches.

Code of Conduct

As contributors and maintainers of MAICoS, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating documentation,
submitting merge requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience
for everyone, regardless of level of experience, gender, gender identity and expression,
sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or
religion.

Examples of unacceptable behavior by participants include the use of sexual language or
imagery, derogatory comments or personal attacks, trolling, public or private
harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are not
aligned to this Code of Conduct. Project maintainers who do not follow the Code of
Conduct may be removed from the project team.

This code of Conduct applies both within project spaces and in public spaces when an
individual is representing the project or its community.

This Code of Conduct is adapted from the Contributor Covenant [https://contributor-covenant.org], version 1.1.0,
available at https://contributor-covenant.org/version/1/1/0/

	Contributing your own analysis module

	Testing

	Contributing to the documentation
	Local documentation

	Structure

	Version information
	Data
	__version__

	Release workflow
	Versioneer (optional)

	Create release

	After the release

Contributing your own analysis module

To write your module take a look at the comprehensive example in the documentation of
maicos.core.AnalysisBase. MAICoS also has more specific base classes for
different geometries that make developing modules much easier. You may take a look at
the source code at src/maicos/modules.

After you wrote your module you can add it in a new file in src/maicos/modules. On
top of that please also update the list in src/maicos/modules/__init__.py
accordingly. Also, create a new .rst file with your module name in
docs/src/references/modules similar to the already existing. To finally show the
documentation for the other modules add an entry in
docs/src/references/modules/index.rst in alphabetical order.

All MAICoS modules are also listed in the README.rst and you should add your module
as well.

Finally, also provide meaningful tests for your module in test/modules.

For further questions feel free to ask us on our Discord [https://discord.gg/mnrEQWVAed] server.

Testing

Whenever you add a new feature to the code you should also add a test case. Further test
cases are also useful if a bug is fixed or you consider something to be worthwhile.
Follow the philosophy - the more the better!

You can run all tests by:

tox

These are exactly the same tests that will be performed online in our GitLab CI
workflows.

Also, you can run individual environments if you wish to test only specific
functionalities, for example

tox -e lint # code style
tox -e build # packaging
tox -e tests # testing
tox -e docs # build the documentation

You can also run only a subset of the tests with tox -e tests -- <tests/file.py>,
replacing <tests/file.py> with the path to the files you want to test, e.g. tox -e
tests -- tests/test_main.py for testing only the main functions. For more details take
a look at the usage and invocation
<https://docs.pytest.org/en/latest/usage.html#usage-and-invocations> page of the pytest
documentation.

You can also use tox -e format to use tox to do actual formatting instead of just
testing it. Also, you may want to setup your editor to automatically apply the black [https://black.readthedocs.io/en/stable/] code formatter when saving your files, there
are plugins to do this with all major editors [https://black.readthedocs.io/en/stable/editor_integration.html].

Contributing to the documentation

Local documentation

The documentation of MAICoS is written in reStructuredText (rst) and uses the
Sphinx [https://www.sphinx-doc.org/en/master/] documentation generator. You can build the documentation from the
maicos/docs folder:

tox -e docs

Then, visualize the local documentation with your favorite internet explorer (here
Mozilla Firefox is used)

firefox dist/docs/index.html

Structure

Most of the content of the documentation is written in .rst files located within
docs/src/. The content in the Reference guides section is directly
generated from the documentation string of the source code located in src/maicos
thanks to Sphinx [https://www.sphinx-doc.org/en/master/] and Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html].

After creating a new module, add it to the documentation by modifying the toctree in
the docs/src/references/modules/index.rst file, and adding a new .rst file with the
following format:

.. _ModuleName:

ModuleName
##########

.. _label_module_name:

.. autoclass:: maicos.ModuleName
 :members:
 :undoc-members:
 :show-inheritance:

Note that all files located within docs/src/examples are generated from the Python
scrips located in examples using Sphinx-Gallery [https://sphinx-gallery.github.io/stable/index.html].

Version information

The version information in maicos.__version__ indicates the release of MAICoS using
semantic versioning [http://semver.org/].

In brief:

Given a version number MAJOR.MINOR.PATCH, we increment the

	MAJOR version when we make incompatible API changes,

	MINOR version when we add functionality in a backwards-compatible manner,
and

	PATCH version when we make backwards-compatible bug fixes.

However, as long as the MAJOR number is 0 (i.e. the API has not stabilized),
even MINOR increases may introduce incompatible API changes. As soon as we have a
1.0.0 release, the public API can only be changed in a backward-incompatible manner with
an increase in MAJOR version.

Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format, following PEP 440 [https://peps.python.org/pep-0440/].

Note

Development versions and pre-releases have a suffix after
the release number, such as 0.7.0+12.gFEED2BEEF. If you have
problems, try out a full release (e.g. 0.7.0) first.

Data

	
maicos.__version__ = '0.8+23.g3ff25bb'

	Version information for MAICoS, following PEP 440 [https://peps.python.org/pep-0440/]
and semantic versioning [http://semver.org/].

Release workflow

Versioneer (optional)

	Upgrade versioneer if a new version [https://pypi.org/project/versioneer] is available.

	Check the upgrade notes [https://github.com/python-versioneer/python-versioneer/blob/master/UPGRADING.md] if additional steps are required

	Upgrade versioneer

pip3 install --upgrade versioneer

	Remove the old versioneer.py file

rm versioneer.py

	Install new versioneer.py file

python3 -m versioneer install --vendor

Revert the changes in src/maicos/__init__.py

	Commit changes

Create release

	Make sure changelog is up to date and add release date and commit
your changes

git commit -m 'Release vX.X'

	Tag commit with the new version

git tag -m 'Release vX.X' vX.X

	Test locally!!!

git describe

and

pip3 install .

should result in vX.X

	If a new major release create release branch

git branch release-X-X

otherwise update the release branch with respect to the branch

git checkout release-X-X
git rebase -i main

	Push branch, tag

git push release-X-X
git push --tags

	Go to the web interface [https://gitlab.com/maicos-devel/maicos/-/tags], add changelog as release message

After the release

	Bump version (Create new section in CHANGELOG.rst)

Contributors

Thank you to all of the developers, programmers, and researchers who
contributed to the creation of MAICoS.

We also thank the Institute for Computational Physics [https://www.simtech.uni-stuttgart.de/exc/research/junior-research-groups/multiscale-materials-modeling/] (University of
Stuttgart), group members of Roland Netz [https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/index.html] at Freie Universität Berlin,
and the Stuttgart Center for Simulation Science and the German Research
Council (DFG) for funding through the Cluster of Excellence EXC 2075 [https://www.simtech.uni-stuttgart.de/exc/]
“Data-integrated Simulation Science”.

History

MAICoS was first developed in Roland Netz [https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/index.html]’s group at the Freie University of
Berlin by Alexander Schlaich [https://www.simtech.uni-stuttgart.de/exc/people/Schlaich-00004/] and Philip Loche [https://people.epfl.ch/philip.loche], and is now mostly developed
and maintained at the Institute for Computational Physics.

Maintainers

	Philip Loche [https://people.epfl.ch/philip.loche]

	Alexander Schlaich [https://www.simtech.uni-stuttgart.de/exc/people/Schlaich-00004/]

	Henrik Stooß

Developers

	Maximilian Becker

	Simon Gravelle [https://simongravelle.github.io/]

	Philipp Stärk

	Srihas Velpuri

Contributors

	Adyant Agrawal

	Shane Carlson

	Kira Fischer

	Federico Grasselli

	Julian Kappler

	Marc Sauter

	Laura Scalfi

	Julius Schulz

	Dominik Wille

	Amanuel Wolde-Kidan

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 maicos	

 	
 	
 maicos.core	

 	
 	
 maicos.lib	

 	
 	
 maicos.lib._cmath	

 	
 	
 maicos.lib.math	

 	
 	
 maicos.lib.tables	

 	
 	
 maicos.lib.util	

 	
 	
 maicos.lib.weights	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	__version__ (in module maicos)

 	_frame_index (maicos.core.AnalysisBase attribute)

 	_index (maicos.core.AnalysisBase attribute)

 	
 	_obs (maicos.core.AnalysisBase attribute)

 	_trajectory (maicos.core.AnalysisBase attribute)

 	_universe (maicos.core.AnalysisBase attribute)

A

 	
 	AnalysisBase (class in maicos.core)

 	AnalysisCollection (class in maicos.core)

 	
 	atomgroup (maicos.core.AnalysisBase attribute)

 	atomgroup_header() (in module maicos.lib.util)

 	atomtypes (in module maicos.lib.tables)

B

 	
 	bin() (in module maicos.lib.util)

 	bin_area (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.PlanarBase._obs attribute)

 	(maicos.core.SphereBase._obs attribute)

 	bin_edges (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.PlanarBase._obs attribute)

 	(maicos.core.SphereBase._obs attribute)

 	bin_pos (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.CylinderBase.results attribute)

 	(maicos.core.PlanarBase._obs attribute)

 	(maicos.core.PlanarBase.results attribute)

 	(maicos.core.ProfileCylinderBase.results attribute)

 	(maicos.core.ProfilePlanarBase.results attribute)

 	(maicos.core.ProfileSphereBase.results attribute)

 	(maicos.core.SphereBase._obs attribute)

 	(maicos.core.SphereBase.results attribute)

 	(maicos.DensityCylinder.results attribute)

 	(maicos.DensityPlanar.results attribute)

 	(maicos.DensitySphere.results attribute)

 	(maicos.DielectricCylinder.results attribute)

 	(maicos.DielectricPlanar.results attribute)

 	(maicos.DielectricSphere.results attribute)

 	(maicos.DiporderCylinder.results attribute)

 	(maicos.DiporderPlanar.results attribute)

 	(maicos.DiporderSphere.results attribute)

 	(maicos.modules.pdfcylinder.PDFCylinder.results attribute)

 	(maicos.PDFPlanar.results attribute)

 	(maicos.TemperaturePlanar.results attribute)

 	(maicos.VelocityCylinder.results attribute)

 	(maicos.VelocityPlanar.results attribute)

 	
 	bin_volume (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.PlanarBase.results attribute)

 	(maicos.core.SphereBase.results attribute)

 	bin_width (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.PlanarBase._obs attribute)

 	(maicos.core.SphereBase._obs attribute)

 	bins (maicos.PDFPlanar.results attribute)

 	(maicos.RDFDiporder.results attribute)

 	box_center (maicos.core.AnalysisBase property)

 	(maicos.core.AnalysisBase._obs attribute)

C

 	
 	center_cluster() (in module maicos.lib.math)

 	charge_neutral() (in module maicos.lib.util)

 	citation_reminder() (in module maicos.lib.util)

 	CM_parameters (in module maicos.lib.tables)

 	compute_form_factor() (in module maicos.lib.math)

 	compute_rdf_structure_factor() (in module maicos.lib.math)

 	compute_structure_factor() (in module maicos.lib._cmath)

 	
 	correlation() (in module maicos.lib.math)

 	correlation_analysis() (in module maicos.lib.util)

 	correlation_time() (in module maicos.lib.math)

 	corrtime (maicos.core.AnalysisBase attribute)

 	cos_theta_i (maicos.DipoleAngle.resulst attribute)

 	cos_theta_ii (maicos.DipoleAngle.resulst attribute)

 	cos_theta_ij (maicos.DipoleAngle.resulst attribute)

 	CylinderBase (class in maicos.core)

D

 	
 	density_weights() (in module maicos.lib.weights)

 	DensityCylinder (class in maicos)

 	DensityPlanar (class in maicos)

 	DensitySphere (class in maicos)

 	deps_par (maicos.DielectricPlanar.results attribute)

 	deps_perp (maicos.DielectricPlanar.results attribute)

 	deps_r (maicos.DielectricCylinder.results attribute)

 	deps_rad (maicos.DielectricSphere.results attribute)

 	deps_z (maicos.DielectricCylinder.results attribute)

 	DielectricCylinder (class in maicos)

 	DielectricPlanar (class in maicos)

 	DielectricSpectrum (class in maicos)

 	DielectricSphere (class in maicos)

 	DipoleAngle (class in maicos)

 	diporder_pair_weights() (in module maicos.lib.weights)

 	diporder_weights() (in module maicos.lib.weights)

 	DiporderCylinder (class in maicos)

 	
 	DiporderPlanar (class in maicos)

 	DiporderSphere (class in maicos)

 	DiporderStructureFactor (class in maicos)

 	DOC_DICT (in module maicos.lib.util)

 	DOI_LIST (in module maicos.lib.util)

 	dprofile (maicos.core.ProfileBase.results attribute)

 	(maicos.core.ProfileCylinderBase.results attribute)

 	(maicos.core.ProfilePlanarBase.results attribute)

 	(maicos.core.ProfileSphereBase.results attribute)

 	(maicos.DensityCylinder.results attribute)

 	(maicos.DensityPlanar.results attribute)

 	(maicos.DensitySphere.results attribute)

 	(maicos.DiporderCylinder.results attribute)

 	(maicos.DiporderPlanar.results attribute)

 	(maicos.DiporderSphere.results attribute)

 	(maicos.TemperaturePlanar.results attribute)

 	(maicos.VelocityCylinder.results attribute)

 	(maicos.VelocityPlanar.results attribute)

E

 	
 	eps_par (maicos.DielectricPlanar.results attribute)

 	eps_par_coll (maicos.DielectricPlanar.results attribute)

 	eps_par_self (maicos.DielectricPlanar.results attribute)

 	eps_perp (maicos.DielectricPlanar.results attribute)

 	
 	eps_perp_coll (maicos.DielectricPlanar.results attribute)

 	eps_perp_self (maicos.DielectricPlanar.results attribute)

 	eps_r (maicos.DielectricCylinder.results attribute)

 	eps_rad (maicos.DielectricSphere.results attribute)

 	eps_z (maicos.DielectricCylinder.results attribute)

F

 	
 	frames (maicos.core.AnalysisBase attribute)

 	
 	FT() (in module maicos.lib.math)

G

 	
 	get_center() (in module maicos.lib.util)

 	
 	get_cli_input() (in module maicos.lib.util)

 	get_compound() (in module maicos.lib.util)

I

 	
 	iFT() (in module maicos.lib.math)

K

 	
 	KineticEnergy (class in maicos)

L

 	
 	L (maicos.core.PlanarBase._obs attribute)

M

 	
 	
 maicos.core

 	module

 	
 maicos.lib

 	module

 	
 maicos.lib._cmath

 	module

 	
 maicos.lib.math

 	module

 	
 maicos.lib.tables

 	module

 	
 maicos.lib.util

 	module

 	
 	
 maicos.lib.weights

 	module

 	maicos_banner() (in module maicos.lib.util)

 	means (maicos.core.AnalysisBase attribute)

 	miller_indices (maicos.Saxs.results attribute)

 	
 module

 	maicos.core

 	maicos.lib

 	maicos.lib._cmath

 	maicos.lib.math

 	maicos.lib.tables

 	maicos.lib.util

 	maicos.lib.weights

N

 	
 	new_mean() (in module maicos.lib.math)

 	
 	new_variance() (in module maicos.lib.math)

O

 	
 	odims (maicos.core.PlanarBase property)

P

 	
 	pdf (maicos.PDFPlanar.results attribute)

 	PDFCylinder (class in maicos.modules.pdfcylinder)

 	PDFPlanar (class in maicos)

 	phi_bins (maicos.modules.pdfcylinder.PDFCylinder.results attribute)

 	phi_pdf (maicos.modules.pdfcylinder.PDFCylinder.results attribute)

 	PlanarBase (class in maicos.core)

 	pos_cyl (maicos.core.CylinderBase attribute)

 	pos_sph (maicos.core.SphereBase attribute)

 	profile (maicos.core.ProfileBase.results attribute)

 	(maicos.core.ProfileCylinderBase.results attribute)

 	(maicos.core.ProfilePlanarBase.results attribute)

 	(maicos.core.ProfileSphereBase.results attribute)

 	(maicos.DensityCylinder.results attribute)

 	(maicos.DensityPlanar.results attribute)

 	(maicos.DensitySphere.results attribute)

 	(maicos.DiporderCylinder.results attribute)

 	(maicos.DiporderPlanar.results attribute)

 	(maicos.DiporderSphere.results attribute)

 	(maicos.TemperaturePlanar.results attribute)

 	(maicos.VelocityCylinder.results attribute)

 	(maicos.VelocityPlanar.results attribute)

 	
 	ProfileBase (class in maicos.core)

 	ProfileCylinderBase (class in maicos.core)

 	ProfilePlanarBase (class in maicos.core)

 	ProfileSphereBase (class in maicos.core)

 	
 Python Enhancement Proposals

 	PEP 440, [1]

Q

 	
 	q (maicos.DiporderStructureFactor.results attribute)

R

 	
 	R (maicos.core.CylinderBase._obs attribute)

 	(maicos.core.SphereBase._obs attribute)

 	rdf (maicos.RDFDiporder.results attribute)

 	RDFDiporder (class in maicos)

 	render_docs() (in module maicos.lib.util)

 	
 	results (maicos.core.AnalysisBase attribute)

 	(maicos.DielectricSpectrum attribute)

 	rot (maicos.KineticEnergy.results attribute)

 	run() (maicos.core.AnalysisBase method)

 	(maicos.core.AnalysisCollection method)

S

 	
 	save() (maicos.core.AnalysisCollection method)

 	(maicos.core.ProfileBase method)

 	(maicos.DielectricCylinder method)

 	(maicos.DielectricPlanar method)

 	(maicos.DielectricSpectrum method)

 	(maicos.DielectricSphere method)

 	(maicos.DipoleAngle method)

 	(maicos.DiporderStructureFactor method)

 	(maicos.KineticEnergy method)

 	(maicos.modules.pdfcylinder.PDFCylinder method)

 	(maicos.PDFPlanar method)

 	(maicos.RDFDiporder method)

 	(maicos.Saxs method)

 	
 	savetxt() (maicos.core.AnalysisBase method)

 	Saxs (class in maicos)

 	scalar_prod_corr() (in module maicos.lib.math)

 	scattering_intensities (maicos.Saxs.results attribute)

 	scattering_vectors (maicos.Saxs.results attribute)

 	sems (maicos.core.AnalysisBase attribute)

 	SphereBase (class in maicos.core)

 	structure_factors (maicos.DiporderStructureFactor.results attribute)

 	struture_factors (maicos.Saxs.results attribute)

 	sums (maicos.core.AnalysisBase attribute)

 	symmetrize() (in module maicos.lib.math)

T

 	
 	t (maicos.DipoleAngle.results attribute)

 	(maicos.KineticEnergy.results attribute)

 	temperature_weights() (in module maicos.lib.weights)

 	TemperaturePlanar (class in maicos)

 	
 	times (maicos.core.AnalysisBase attribute)

 	trajectory_precision() (in module maicos.lib.util)

 	trans (maicos.KineticEnergy.results attribute)

 	transform_cylinder() (in module maicos.lib.math)

 	transform_sphere() (in module maicos.lib.math)

U

 	
 	Unit_vector (class in maicos.lib.util)

 	unit_vectors_cylinder() (in module maicos.lib.util)

 	
 	unit_vectors_planar() (in module maicos.lib.util)

 	unit_vectors_sphere() (in module maicos.lib.util)

 	unwrap_refgroup() (in module maicos.lib.util)

V

 	
 	velocity_weights() (in module maicos.lib.weights)

 	
 	VelocityCylinder (class in maicos)

 	VelocityPlanar (class in maicos)

Z

 	
 	z_bins (maicos.modules.pdfcylinder.PDFCylinder.results attribute)

 	z_pdf (maicos.modules.pdfcylinder.PDFCylinder.results attribute)

 	
 	zmax (maicos.core.PlanarBase attribute)

 	zmin (maicos.core.PlanarBase attribute)

Computation times

04:53.302 total execution time for 6 files from all galleries:

 MAICoS Python Examples

MAICoS Python Examples

This folder consists of introductory examples and examples demonstrating specific
features of MAICoS’ using its Python API.

For running the examples install maicos with the examples optional dependencies.

pip install maicos[examples]

[image:]
Ideal component of the chemical potential

 Ideal component of the chemical potential

[image:]
Pair distribution functions

 Pair distribution functions

[image:]
Dielectric profile calculation

 Dielectric profile calculation

[image:]
Small-angle X-ray scattering

 Small-angle X-ray scattering

[image:]
Usage - Python interpreter

 Usage - Python interpreter

[image:]
Calculating and interpreting dipolar pair correlation functions

 Calculating and interpreting dipolar pair correlation functions

Download all examples in Python source code: examples_python.zip

Download all examples in Jupyter notebooks: examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Computation times

Computation times

04:53.302 total execution time for 6 files from examples:

_images/slit-flow-light.png

_images/sphx_glr_chemical-potential_thumb.png

_images/saxs-light.png
detector

_images/slit-flow-dark.png
e o ® ® 2 9

® ® o 9 9 * 0
e e ® 9 0 0

_images/sphx_glr_dipole-correlations_001.png
6.0

55

5.0

45

4.0

35

3.0

2.5

9k (KF)

15

10

05

s

0.0

2.0

35

3.0

2.5

o

2.0

15

10

10

A

_images/sphx_glr_dipole-correlations_002.png
2 0 3 0 ° 0 ° 0
2 8 8 1 2] 8 N
N N N - E B S S

(b)ts

q/At

_images/sphx_glr_dielectric-profiles_001.png

_images/sphx_glr_dielectric-profiles_thumb.png

_images/sphx_glr_dipole-correlations_thumb.png
s

B I

35)

_images/sphx_glr_pair-distribution-functions_001.png
[w/B] @10
P

200¢
1500
1000

z[A]

ridl

_images/sphx_glr_pair-distribution-functions_thumb.png
o

nav.xhtml

 Table of Contents

 		
 MAICoS’ Documentation

_images/sphx_glr_saxs_003.png
g
&
2
R
Q
I
g
&
g
S

r(A)

uoRdUN UOANGLISIP [e1pes

n o w o w o
& 8 F a8 S
3338338 3

(b)s Jopey anpnas

q (1/A)

_images/sphx_glr_saxs_thumb.png
srucure focto sta)

scatring inensites o)

2
10
o8
o6
04
02

10
ns
s
s0
25

Q)

_images/sphx_glr_saxs_001.png
N

9 ® © % o
4 6 o & o

(b)s Jopey anpnas

e
El

m 9 o 9o »
N g ~ 4

(b)r sanIsuSIUI BuLaneds

q (1/A)

_images/sphx_glr_saxs_002.png
Slaq)

flg?

1)

10

05

0.0
60

40

20

40

20

— Oxygen
—— Hydrogen

q (1/A)

_images/sphx_glr_usage-python_003.png
10

0.8

(g-y - N) H Asusp
© 4
3 S

02

0.0

— Oxygen
—— Hydrogen

8

MR
(g-y-n) O Aususp

15

10

-10

-15

z coordinate (4)

_images/sphx_glr_usage-python_004.png
10

(g-y - n) 12BN Ausuap
@ © s o
S S S S

0.0

— H0
—— Nacl

—_—
A

|

-15

-
4 S o o

(e-y-M) 0 Ausuzp

14
12

0
02
0.0

15

10

-10

z coordinate (4)

_images/sphx_glr_usage-python_001.png
10

0.8

2
S

(e-y-n) OZH Ausuap

°
S

02

0.0

15

10

-10

-15

zcoordinate (A)

_images/sphx_glr_usage-python_002.png
10

0.8

< 4
3 S

(e-y-n) OZH Ausuap

02

0.0

15

10

-10

-15

zcoordinate (A)

_images/sphx_glr_usage-python_005.png
-1y

velocity H20 (Aps

05

0.0

-1.0

-15

-10 =5 o 5 10
z coordinate (4)

_images/sphx_glr_usage-python_006.png
cos(6)

0.4

03

02

0.1

-10

0
z coordinate (4)

10

_images/sphx_glr_usage-python_thumb.png
10

(- o sz

00

ED

ED

2 coordinate (A)

_static/broken_example.png

_static/logo_MAICOS_gray.png

_static/minus.png

_static/file.png

_static/plus.png

_static/no_image.png

_images/logo_MAICOS_gray.png

_images/saxs-dark.png
Basnpl