
MAICoS Documentation

see the file AUTHORS for the full list of names

Mar 14, 2024

CONTENTS

1 Getting started 3

2 How-to guides 5

3 Reference guides 7

4 Explanations 9

5 Developer documentation 11
5.1 Getting started . 11
5.2 How-to guides . 36
5.3 Reference guides . 73
5.4 Explanations . 146
5.5 Developer documentation . 156
5.6 Contributors . 161

Python Module Index 163

Index 165

i

ii

MAICoS Documentation

This documentation covers everything you need to know about MAICoS, the Molecular Analysis for Interfacial and
Confined Systems toolkit. There are five sections:

• Getting started

• How-to guides

• Reference guides

• Explanations

• Developer documentation

If you are new to MAICoS, we recommend starting with the Getting started section. If you want to contribute to the
development of the library, please have a look at our developer documentation.

CONTENTS 1

MAICoS Documentation

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

The Getting started section is for MAICoS beginners. It will help you install and familiarize yourself with MAICoS
and its approach to analyse molecular dynamics simulations.

3

MAICoS Documentation

4 Chapter 1. Getting started

CHAPTER

TWO

HOW-TO GUIDES

The How-to guides section is for MAICoS intermediate and advanced users. It contains guides taking you through
series of steps involved in addressing key problems and use-cases in MAICoS.

5

MAICoS Documentation

6 Chapter 2. How-to guides

CHAPTER

THREE

REFERENCE GUIDES

The Reference guides section is for MAICoS intermediate and advanced users, it contains technical references and
parameter list for each MAICoS modules (How-to guides) as well as the APIs. It describes the various functionalities
provided by MAICoS. You can always refer to this section to learn more about classes, functions, modules, and other
aspects of MAICoS machinery you may come across.

7

MAICoS Documentation

8 Chapter 3. Reference guides

CHAPTER

FOUR

EXPLANATIONS

The Explanations section discusses key topics and concepts at a fairly high level and provides explanations to expand
your knowledge of MAICoS. It requires at least basic to intermediate knowledge of MAICoS.

9

MAICoS Documentation

10 Chapter 4. Explanations

CHAPTER

FIVE

DEVELOPER DOCUMENTATION

The Developer documentation helps you contributing to the code base or the documentation of MAICoS.

5.1 Getting started

This sections describes MAICoS, how to install it, and its most basic commands.

5.1.1 What is MAICoS

MAICoS is the acronym for Molecular Analysis for Interfacial and Confined Systems. It is an object-oriented python
toolkit for analysing the structure and dynamics of interfacial and confined fluids from molecular simulations. Com-
bined with MDAnalysis, MAICoS can be used to extract density profiles, dielectric constants, structure factors, or
transport properties from trajectories files, including LAMMPS, GROMACS, CHARMM or NAMD data. MAICoS is
open source and is released under the GNU general public license v3.0.

MAICoS is a tool for beginners of molecular simulations with no prior Python experience. For these users MAICoS
provides a descriptive command line interface. Also experienced users can use the Python API for their day to day
analysis or use the provided infrastructure to build their own analysis for interfacial and confined systems.

Keep up to date with MAICoS news by following us on Twitter. If you find an issue, you can report it on Gitlab. You
can also join the developer team on Discord to discuss possible improvements and usages of MAICoS.

Currently, MAICoS supports the following analysis modules in alphabetical order:

11

https://www.mdanalysis.org
https://twitter.com/maicos_analysis
https://gitlab.com/maicos-devel/maicos
https://discord.gg/mnrEQWVAed

MAICoS Documentation

Module Name Description
DensityCylinder Compute cylindrical partial densitiy profiles
DensityPlanar Compute cartesian partial density profiles
DensitySphere Compute spherical partial density profiles
DielectricCylinder Compute cylindrical dielectric profiles
DielectricPlanar Compute planar dielectric profiles
DielectricSpectrum Compute the linear dielectric spectrum
DielectricSphere Compute spherical dielectric profiles
DipoleAngle Compute angle timeseries of dipole moments
DiporderCylinder Compute cylindrical dipolar order parameters
DiporderPlanar Compute planar dipolar order parameters
RDFDiporder Spherical Radial Distribution function between dipoles
DiporderSphere Compute spherical dipolar order parameters
DiporderStructureFactor Structure factor for dipoles
KineticEnergy Compute the timeseries of energies
PDFCylinder Compute cylindrical shell-wise 1D pair distribution functions
PDFPlanar Compute slab-wise planar 2D pair distribution functions
Saxs Compute small angle X-Ray structure factors and scattering intensities

(SAXS)
TemperaturePlanar Compute temperature profiles in a cartesian geometry
VelocityCylinder Compute the cartesian velocity profile across a cylinder
VelocityPlanar Compute the velocity profile in a cartesian geometry

5.1.2 Installation

Install MAICoS using pip with:

pip install maicos

or using conda with:

conda install -c conda-forge maicos

5.1.3 Usage - Python interpreter

To follow this tutorial, it is assumed that MAICoS has been installed on your computer.

MAICoS heavily depends on the MDAnalysis infrastructure for trajectory loading and atom selection. Here we will
only cover a small aspects of the capabilities of MDAnalysis. If you want to learn more about the library, take a look
at their documentation.

Only three MAICoS analysis modules are used in this tutorial maicos.DensityPlanar, maicos.VelocityPlanar
and maicos.DiporderPlanar but all modules follow the same structure:

1. load your simulation data into an MDAnalysis.core.universe.Universe

2. define analysis parameters like bin width or the direction of the analysis

3. after the analysis was succesful, access all results in a MDAnalysis.analysis.base.Results of the analysis
object.

Note that some of the calculations may contain pitfall, such as dielectric profiles calculation. Potential pitfalls and best
practices are listed in the How-to guides section.

12 Chapter 5. Developer documentation

https://pip.pypa.io
https://www.anaconda.com
https://www.mdanalysis.org
https://www.mdanalysis.org
https://docs.mdanalysis.org/stable/index.html
https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results

MAICoS Documentation

To start, let us first import Matplotlib, MDAnalysis and MAICoS

import matplotlib.pyplot as plt
import MDAnalysis as mda

import maicos

Load Simulation Data

For this tutorial we use a system consisting of a 2D slab with 1176 water molecules confined in a 2D slit made of NaCl
atoms, where the two water/solid interfaces are normal to the axis 𝑧 as shown in the snapshot below:

An acceleration 𝑎 = 0.05 nm ps−2 was applied to the water molecules in the 𝑒𝑥 direction parallel to the NaCl wall, and
the atoms of the wall were maintained frozen along 𝑒𝑥.

We first create an MDAnalysis.core.universe.Universe by loading a topology and trajectory from disk. You can

5.1. Getting started 13

https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe

MAICoS Documentation

download the topology and the trajectory from our website.

u = mda.Universe("slit_flow.tpr", "slit_flow.trr")

Let us print a few information about the trajectory:

print(f"Number of frames in the trajectory is {u.trajectory.n_frames}.")
timestep = round(u.trajectory.dt, 2)
print(f"Time interval between two frames is {timestep} ps.")
total_time = round(u.trajectory.totaltime, 2)
print(f"Total simulation time is {total_time} ps.")

Number of frames in the trajectory is 201.
Time interval between two frames is 10.0 ps.
Total simulation time is 2000.0 ps.

Now, we define four atom groups containing repectively:

1. the oxygen and the hydrogen atoms (of the water molecules),

2. the oxygen atoms (of the water molecules),

3. the hydrogen atoms (of the water molecules),

4. the Na and Cl atoms (of the wall):

group_H2O = u.select_atoms("type OW HW")
group_O = u.select_atoms("type OW")
group_H = u.select_atoms("type HW")
group_NaCl = u.select_atoms("type SOD CLA")

Let us print a few information about the groups

print(f"Number of water molecules is {group_O.n_atoms}.")
print(f"Number of NaCl atoms is {group_NaCl.n_atoms}.")

Number of water molecules is 1176.
Number of NaCl atoms is 784.

Density Profiles

Let us use the maicos.DensityPlanar class to extract the density profile of the group_H2O along the (default) 𝑧 axis
by running the analysis:

dplan = maicos.DensityPlanar(group_H2O).run()

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.

The warning starting with Unwrapping is perfectly normal and can be ignored for now.

Let us extract the bin coordinates 𝑧 and the averaged density profile from the results attribute:

zcoor = dplan.results.bin_pos
dens = dplan.results.profile

14 Chapter 5. Developer documentation

MAICoS Documentation

The density profile is given as a 1D array, let us look at the 10 first lines:

print(dens[:10])

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.91778317e-05 3.26228271e-01 9.99460378e-01
5.32837117e-01 5.64829859e-01]

By default the bin_width is 1 Å, and the unit is atomic mass per 3 (u/Å3).

Let us plot the density profile using Matplotlib:

fig, ax = plt.subplots()

ax.plot(zcoor, dens)

ax.set_xlabel(r"z coordinate ($\rm Å$)")
ax.set_ylabel(r"density H2O ($\rm u \cdot Å^{-3}$)")

fig.show()

5.1. Getting started 15

MAICoS Documentation

Uncertainity estimates

MAICoS estimates the uncertainity for each profile. This uncertainity is stored inside the dprofile attribute.

uncertainity = dplan.results.dprofile

Let us plot the results also showing the uncertainities

fig, ax = plt.subplots()

ax.errorbar(zcoor, dens, 5 * uncertainity)

ax.set_xlabel(r"z coordinate ($\rm Å$)")
ax.set_ylabel(r"density H2O ($\rm u \cdot Å^{-3}$)")

fig.show()

For this example we scale the error by 5 to be visible in the plot.

The uncertainity estimatation assumes that the trajectory data is uncorraleted. If the correlation time is too high or not
reasonably computable a warning occurs that the uncertainity estimatation might be unreasonable.

maicos.DensityPlanar(group_H2O).run(start=10, stop=13, step=1)

16 Chapter 5. Developer documentation

MAICoS Documentation

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.
/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-
→˓packages/maicos/core/base.py:456: UserWarning: Your trajectory is too short to␣
→˓estimate a correlation time. Use the calculated error estimates with caution.
self.corrtime = correlation_analysis(self.timeseries)

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad7bc26430>

Improving the Results

By changing the value of the default parameters, one can improve the results, and perform more advanced operations.

Let us increase the spatial resolution by reducing the bin_width, and extract two profiles instead of one:

• one for the oxygen atoms of the water molecules,

• one from the hydrogen atoms:

dplan_smaller_bin = []
for ag in [group_O, group_H]:

dplan_smaller_bin.append(
maicos.DensityPlanar(ag, bin_width=0.5, unwrap=False).run()

)

TODO: Intoduce AnalysisCollection here?

zcoor_smaller_bin_O = dplan_smaller_bin[0].results.bin_pos
dens_smaller_bin_O = dplan_smaller_bin[0].results.profile

zcoor_smaller_bin_H = dplan_smaller_bin[0].results.bin_pos
dens_smaller_bin_H = dplan_smaller_bin[0].results.profile

Let us plot the results using two differents 𝑦-axis:

fig, ax1 = plt.subplots()

ax1.plot(zcoor_smaller_bin_O, dens_smaller_bin_O, label=r"Oxygen")
ax1.plot(zcoor_smaller_bin_H, dens_smaller_bin_H * 8, label=r"Hydrogen")

ax1.set_xlabel(r"z coordinate ($Å$)")
ax1.set_ylabel(r"density O ($\rm u \cdot Å^{-3}$)")

ax2 = ax1.twinx()
ax2.set_ylabel(r"density H ($\rm u \cdot Å^{-3}$)")
ax1.legend()

fig.show()

5.1. Getting started 17

MAICoS Documentation

Access to all the Module’s Options

For each MAICoS module, they are several parameters similar to bin_width. The parameter list and default options
are listed in the module’s documentation, and can be gathered by calling the help function of Python:

help(maicos.DensityPlanar)

Help on class DensityPlanar in module maicos.modules.densityplanar:

class DensityPlanar(maicos.core.planar.ProfilePlanarBase)
| DensityPlanar(atomgroup: MDAnalysis.core.groups.AtomGroup, dens: str = 'mass', dim:␣
→˓int = 2, zmin: Optional[float] = None, zmax: Optional[float] = None, bin_width: float␣
→˓= 1, refgroup: Optional[MDAnalysis.core.groups.AtomGroup] = None, sym: bool = False,␣
→˓grouping: str = 'atoms', unwrap: bool = True, bin_method: str = 'com', output: str =
→˓'density.dat', concfreq: int = 0, jitter: float = 0.0) -> None
|
| Cartesian partial density profiles.
|
| Calculations are carried out for
| ``mass`` :math:`(\rm u \cdot Å^{-3})`, ``number`` :math:`(\rm Å^{-3})` or ``charge``
| :math:`(\rm e \cdot Å^{-3})` density profiles along certain cartesian axes ``[x, y,
| z]`` of the simulation cell. Cell dimensions are allowed to fluctuate in time.

(continues on next page)

18 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

|
| For grouping with respect to ``molecules``, ``residues`` etc., the corresponding
| centers (i.e., center of mass), taking into account periodic boundary conditions,
| are calculated. For these calculations molecules will be unwrapped/made whole.
| Trajectories containing already whole molecules can be run with ``unwrap=False`` to
| gain a speedup. For grouping with respect to atoms, the `unwrap` option is always
| ignored.
|
| For the correlation analysis the central bin
| (:math:`N \backslash 2`) of the 0th's group profile is used. For further information␣
→˓on the correlation analysis please
| refer to :class:`maicos.core.base.AnalysisBase` or the :ref:`general-design`
| section.
|
Parameters
atomgroup : MDAnalysis.core.groups.AtomGroup
A :class:`~MDAnalysis.core.groups.AtomGroup` for which the calculations are
performed.
unwrap : bool
When :obj:`True`, molecules that are broken due to the periodic boundary
conditions are made whole.
If the input contains molecules that are already whole, speed up the calculation
by disabling unwrap. To do so, use the flag ``-no-unwrap`` when using MAICoS
from the command line, or use ``unwrap=False`` when using MAICoS from the Python
interpreter.
Note: Molecules containing virtual sites (e.g. TIP4P water models) are not
currently supported in MDAnalysis. In this case, you need to provide unwrapped
trajectory files directly, and disable unwrap. Trajectories can be unwrapped,
for example, using the ``trjconv`` command of GROMACS.
refgroup : MDAnalysis.core.groups.AtomGroup
Reference :class:`~MDAnalysis.core.groups.AtomGroup` used for the calculation.
If ``refgroup`` is provided, the calculation is performed relative to the center
of mass of the AtomGroup. If ``refgroup`` is :obj:`None` the calculations are
performed with respect to the center of the (changing) box.
jitter : float
Magnitude of the random noise to add to the atomic positions.
A jitter can be used to stabilize the aliasing effects sometimes appearing when
histogramming data. The jitter value should be about the precision of the
trajectory. In that case, using jitter will not alter the results of the
histogram. If ``jitter = 0.0`` (default), the original atomic positions are kept
unchanged.
You can estimate the precision of the positions in your trajectory with
:func:`maicos.lib.util.trajectory_precision`. Note that if the precision is not
the same for all frames, the smallest precision should be used.
concfreq : int
When concfreq (for conclude frequency) is larger than ``0``, the conclude
function is called and the output files are written every ``concfreq``

(continues on next page)

5.1. Getting started 19

MAICoS Documentation

(continued from previous page)

| frames.
| dim : {0, 1, 2}
| Dimension for binning (``x=0``, ``y=1``, ``z=1``).
| zmin : float
| Minimal coordinate for evaluation (in Å) with respect to the center of mass of
| the refgroup.
|
| If ``zmin=None``, all coordinates down to the lower cell boundary are taken into
| account.
| zmax : float
| Maximal coordinate for evaluation (in Å) with respect to the center of mass of
| the refgroup.
|
| If ``zmax = None``, all coordinates up to the upper cell boundary are taken into
| account.
| bin_width : float
| Width of the bins (in Å).
| sym : bool
| Symmetrize the profile. Only works in combination with
| ``refgroup``.
| grouping : {``"atoms"``, ``"residues"``, ``"segments"``, ``"molecules"``, ``
→˓"fragments"``}
| Atom grouping for the calculations.
|
| The possible grouping options are the atom positions (in the case where
| ``grouping="atoms"``) or the center of mass of the specified grouping unit (in
| the case where ``grouping="residues"``, ``"segments"``, ``"molecules"`` or
| ``"fragments"``).
| bin_method : {``"com"``, ``"cog"``, ``"coc"``}
| Method for the position binning.
|
| The possible options are center of mass (``"com"``),
| center of geometry (``"cog"``), and center of charge (``"coc"``).
| output : str
| Output filename.
| dens : {``"mass"``, ``"number"``, ``"charge"``}
| density type to be calculated.
|
Attributes
results.bin_pos : numpy.ndarray
Bin positions (in Å) ranging from ``zmin`` to ``zmax``.
results.profile : numpy.ndarray
Calculated profile.
results.dprofile : numpy.ndarray
Estimated profile's uncertainity.
Notes

Partial mass density profiles can be used to calculate the ideal component of the
chemical potential. For details, take a look at the corresponding :ref:`How-to
guide<howto-chemical-potential>`.

(continues on next page)

20 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

|
| Method resolution order:
| DensityPlanar
| maicos.core.planar.ProfilePlanarBase
| maicos.core.planar.PlanarBase
| maicos.core.base.AnalysisBase
| maicos.core.base._Runner
| MDAnalysis.analysis.base.AnalysisBase
| maicos.core.base.ProfileBase
| builtins.object
|
| Methods defined here:
|
| __init__(self, atomgroup: MDAnalysis.core.groups.AtomGroup, dens: str = 'mass', dim:␣
→˓int = 2, zmin: Optional[float] = None, zmax: Optional[float] = None, bin_width: float␣
→˓= 1, refgroup: Optional[MDAnalysis.core.groups.AtomGroup] = None, sym: bool = False,␣
→˓grouping: str = 'atoms', unwrap: bool = True, bin_method: str = 'com', output: str =
→˓'density.dat', concfreq: int = 0, jitter: float = 0.0) -> None
| Initialize self. See help(type(self)) for accurate signature.
|
| --
| Readonly properties inherited from maicos.core.planar.PlanarBase:
|
| odims
| Other dimensions perpendicular to dim i.e. (0,2) if dim = 1.
|
| --
| Methods inherited from maicos.core.base.AnalysisBase:
|
| run(self, start: Optional[int] = None, stop: Optional[int] = None, step:␣
→˓Optional[int] = None, frames: Optional[int] = None, verbose: Optional[bool] = None,␣
→˓progressbar_kwargs: Optional[dict] = None) -> typing_extensions.Self
| Iterate over the trajectory.
|
| savetxt(self, fname: str, X: numpy.ndarray, columns: Optional[List[str]] = None) ->␣
→˓None
| Save to text.
|
| An extension of the numpy savetxt function. Adds the command line input to the
| header and checks for a doubled defined filesuffix.
|
| Return a header for the text file to save the data to. This method builds a
| generic header that can be used by any MAICoS module. It is called by the save
| method of each module.
|
| The information it collects is:
| - timestamp of the analysis
| - name of the module
| - version of MAICoS that was used
| - command line arguments that were used to run the module
| - module call including the default arguments
| - number of frames that were analyzed

(continues on next page)

5.1. Getting started 21

MAICoS Documentation

(continued from previous page)

| - atomgroup that was analyzed
| - output messages from modules and base classes (if they exist)
|
| --
| Readonly properties inherited from maicos.core.base.AnalysisBase:
|
| box_center
| Center of the simulation cell.
|
| --
| Data descriptors inherited from maicos.core.base._Runner:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| --
| Methods inherited from maicos.core.base.ProfileBase:
|
| save(self) -> None
| Save results of analysis to file specified by ``output``.

Here we can see that for maicos.DensityPlanar, there are several possible options such as zmin, zmax (the minimal
and maximal coordinates to consider), or refgroup (to perform the binning with respect to the center of mass of a
certain group of atoms).

Knowing this, let us re-calculate the density profile of H2O, but this time using the group group_H2O as a reference
for the center of mass:

dplan_centered_H2O = maicos.DensityPlanar(
group_H2O, bin_width=0.5, refgroup=group_H2O, unwrap=False

)
dplan_centered_H2O.run()
zcoor_centered_H2O = dplan_centered_H2O.results.bin_pos
dens_centered_H2O = dplan_centered_H2O.results.profile

Let us also extract the density profile for the NaCl walls, but centered with respect to the center of mass of the H2O
group:

dplan_centered_NaCl = maicos.DensityPlanar(
group_NaCl, bin_width=0.5, refgroup=group_H2O, unwrap=False

)
dplan_centered_NaCl.run()
zcoor_centered_NaCl = dplan_centered_NaCl.results.bin_pos
dens_centered_NaCl = dplan_centered_NaCl.results.profile

/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-
→˓packages/maicos/lib/math.py:303: RuntimeWarning: invalid value encountered in divide
(1 - np.arange(1, cutoff) / len(timeseries)) * corr[1:cutoff] / corr[0]

/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-
→˓packages/maicos/core/base.py:456: UserWarning: Your trajectory does not provide␣

(continues on next page)

22 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

→˓sufficient statistics to estimate a correlation time. Use the calculated error␣
→˓estimates with caution.
self.corrtime = correlation_analysis(self.timeseries)

An plot the two profiles with different 𝑦-axis:

fig, ax1 = plt.subplots()

ax1.plot(zcoor_centered_H2O, dens_centered_H2O, label=r"$\rm H_2O$")
ax1.plot(zcoor_centered_NaCl, dens_centered_NaCl / 5, label=r"$\rm NaCl$")

ax1.set_xlabel(r"z coordinate ($Å$)")
ax1.set_ylabel(r"density O ($\rm u \cdot Å^{-3}$)")
ax1.legend()

ax2 = ax1.twinx()
ax2.set_ylabel(r"density NaCl ($\rm u \cdot Å^{-3}$)")

fig.show()

5.1. Getting started 23

MAICoS Documentation

Additional Options

Use verbose=True to display a progress bar:

dplan_verbose = maicos.DensityPlanar(group_H2O)
dplan_verbose.run(verbose=True)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.

0%| | 0/201 [00:00<?, ?it/s]
18%| | 37/201 [00:00<00:00, 360.88it/s]
37%| | 74/201 [00:00<00:00, 360.00it/s]
55%| | 111/201 [00:00<00:00, 362.00it/s]
74%| | 148/201 [00:00<00:00, 362.96it/s]
92%|| 185/201 [00:00<00:00, 362.81it/s]
100%|| 201/201 [00:00<00:00, 361.47it/s]

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad78e1cbe0>

To analyse only a subpart of a trajectory file, for instance to analyse only frames 2, 4, 6, 8, and 10, use the start, stop,
and step keywords as follow:

dplan = maicos.DensityPlanar(group_H2O).run(start=10, stop=20, step=2)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.

Velocity Profile

Here we use the same trajectory file, but extract the velocity profile instead of the density profile. Do to so, the maicos.
VelocityPlanar is used.

Let us call the velocity module:

tplan = maicos.VelocityPlanar(group_H2O, bin_width=0.5, vdim=0, flux=False).run()

zcoor = tplan.results.bin_pos
vel = tplan.results.profile

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.

0`` option, but the binning is made along the default 𝑧 axis.

And plot the velocity profile:

fig, ax = plt.subplots()

ax.axhline(0, linestyle="dotted", color="gray")
ax.plot(zcoor, vel)

ax.set_xlabel(r"z coordinate ($Å$)")
(continues on next page)

24 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

ax.set_ylabel(r"velocity H2O ($Å ps^{-1}$)")

fig.show()

Finally, still using the same trajectory file, we extract the average orientation of the water molecules.

Let us call the maicos.DiporderPlanar to extract the average orientation of the water molecules:

mydiporder = maicos.DiporderPlanar(
group_H2O, refgroup=group_H2O, order_parameter="cos_theta"

).run()

Then, let us extract the cosinus of the angle of the molecules, cos(𝜃):

zcoor = mydiporder.results.bin_pos
cos_theta = mydiporder.results.profile

fig, ax = plt.subplots()

ax.axhline(0, linestyle="dotted", color="gray")
ax.plot(zcoor, cos_theta)

(continues on next page)

5.1. Getting started 25

MAICoS Documentation

(continued from previous page)

ax.set_xlabel(r"z coordinate ($Å$)")
ax.set_ylabel(r"\cos(θ)")

plt.show()

5.1.4 Usage - command line

MAICoS can be used directly from the command line (cli). Using cli instead of a Jupyter notebook can sometimes be
more comfortable, particularly for lengthy analysis. The cli in particular is handy because it allows for updating the
analysis results during the run. You can specify the number of frames after the output is updated with the -concfreq
flag. See below for details.

Note that in this documentation, we almost exclusively describe the use of MAICoS from the python interpreter, but
all operations can be equivalently performed from the cli.

#!/bin/bash
-*- Mode: bash; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
#
Copyright (c) 2024 Authors and contributors
(see the AUTHORS.rst file for the full list of names)
#
Released under the GNU Public Licence, v3 or any higher version

(continues on next page)

26 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

SPDX-License-Identifier: GPL-3.0-or-later

maicos densityplanar -s slit_flow.tpr \
-f slit_flow.trr \
-atomgroup 'type OW HW'

The density profile has been written in a file named ``density.dat`` in the current
directory. The written file starts with the following lines

head -n 20 density.dat

For lengthy analysis, use the ``concfreq`` option to update the result during the run

maicos densityplanar -s slit_flow.tpr \
-f slit_flow.trr \
-atomgroup 'type OW HW' \
-concfreq '10'

The general help of MAICoS can be accessed using

maicos -h

Package-specific page can also be accessed from the cli

maicos densityplanar -h

5.1.5 Some conventions

The base units of MAICoS are consistent with those of MDAnalysis. Keeping inputs and outputs consistent with this
set of units reduces ambiguity, so we encourage everyone to use them exclusively.

The base units are:

Table 1: Base units in MDAnalysis

quantity unit SI units
length Å 10−10 m
mass u 1.660538921× 10−27 kg
time ps 10−12 s
energy kJ/mol 1.66053892103219× 10−21 J
charge 𝑒 1.602176565× 10−19 As
force kJ/(mol·Å) 1.66053892103219× 10−11 J/m
speed Å/ps 100 m/s

5.1. Getting started 27

https://docs.mdanalysis.org/stable/documentation_pages/units.html

MAICoS Documentation

5.1.6 Changelog

v0.9 (XXXX/XX/XX)

Philip Loche, Marc Sauter, Kira Fischer, Federico Grasselli, Henrtik Stooß

• Remove handling of multiple atomgroups in favor of AnalysisCollection (!301)

• Fix openMP detection during setup (!304)

• maicos.Saxs additionally provides structure factor. (!303)

• Remove default arguments from core classes (!302)

• Add an AnalaysisCollection class to perform multiple analyses on the same trajectory (!298)

• Remove custom module command line interface (!299)

• Add example for maicos.core.AnalysisBase and rework own module section in developer docs (!299)

• Allow running an analysis with a universe without a cell (!297)

• Test that core.AnalysisBase API and run method is the same as MDAnalysis.analysis.base.
AnalysisBase (!297)

• Add frames and progressbar_kwargs argument to maicos.core.AnalysisBase.run() (!297)

• Update copyright year (!296)

• Add new diporder modules: RDFDiporder, DiporderStructureFactor (!296)

• Add correlation time estimate for SAXS module (!296)

• Added tests of the analytical error propagation (!292)

• Remove symbolic links from examples (!295)

v0.8 (2024/02/05)

Simon Gravelle, Philip Loche, Marc Sauter, Henrik Stooß, Philipp Staerk, Adyant Agrawal, Kira Fischer

• Skip test for custom modules in case the import is not working (!294)

• Change to CHANGELOG.rst update check so that it is only executed in MRs (!198)

• Rename radial distribution function to pair distribution function (!278)

• Add RDF derivation and explain role of dz. (!278)

• Implement 1D pair distribution function in RDFCylinder (!276)

• Sort format and add more atomtypes to atomtypes.dat (!291)

• Add grouping option to DipoleAngle module (!290)

• Added Support for Python 3.12 (!289)

• Remove suffixes -linux, -macos, -windows when building wheels. Platform will be detected automatically.
(!288)

• Use default tox error for non-exsiting enviroment (!285)

• Parse documentation metadata from pyproject.toml (!287)

• Convert pathlib.Path into str when using in sys.path.append (#123, !286)

• Update dev names (!284)

28 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase

MAICoS Documentation

• Improvements to documentation rendering (#122, !282)

• Unify Python versions in tox environments i.e. py311-build-macos to build-macos (!283)

• Remove deprecated pytest tmpdir fixture (!283)

• Remove deprecated assert_almost_equal in favor of assert_allclose (!283)

• Move from os.path to pathlib.Path (!283)

• Added Support for Python 3.11 (!283)

• Update MacOS images for CI (!281)

• Removed the obsolete option for the vacuum boundary condition in the DielectricPlanar module and prompt
users to use tin-foil boundary conditions instead (!280).

• Add physical integration test to test that structure factor from Saxs is the same as the Fourier transformed RDF.
(!279)

• Add example and explenation of how to relate the radial distribution function and the structure factor (!279)

• Add function maicos.lib.math.rdf_structure_factor() for converting a radial distribution function into
a structure factor. (!279)

• Change default biwnwidth (dq) in maicos.Saxs to 0.1. (!279)

• Move cutils to cmath (!279)

• Add weight argument to maicos.lib._cmath.compute_structure_factor()

• Code cleanup of maicos.Saxs (!279)

• Fixed markup and consistency in correlation function docs (!277)

• Add info for DielectricPlanar module for ignored combination of vac=True and is_3d=False. (!275)

• Add description for tox jobs (!275)

• Cleanup coverage config and move to pyproject.toml (!275)

• Changed the way number normalization works, introduced sums dict (!274)

• Fixed typing error in RDF modules (!273)

• Update docs to reflect changes in mdacli (!271)

• Add banner to MAICoS output reporting the version (!272)

• Update UML graphic (!269)

• Show warnings if set boundaries would result in wrong results (!261)

• Small corrections to the documentation and type hinting (!268)

• Add module for calculating radial distribution functions in cylinders (!242)

• Add modules for calculating cylindrical and spherical dipolar order parameters (!259)

• Fix reproducibility information in output (!263)

• Make savetxt work with Pathlib objects (!267)

• Update versionner to 0.29 (!266)

• Use dipole_vector methods from MDAnalysis (!265)

• Bump minimum Python version to 3.9 (!264)

• Fix dipole calculation in DielectricCylinder (!258)

5.1. Getting started 29

MAICoS Documentation

• Add example for RDFPlanar (!256)

• Move geometry transformations to lib.math (!257)

• Add typehints for examples (!255)

• Add typehints for modules (!253)

• Only test minimum and maximum Python version in CI (!252)

• Add typehints for core classes (!251)

• Update documentation with parameters, returns and examples for library functions (!248)

• Update CI to use latest MacOS (!250)

• Add tables to documentation pages (!249)

• Fix links to own classes in examples (!247)

• Update install instructions for users and devs (!246)

• Show authors on website (!245)

• Add link to developer documentation in CONTRIBUTING.rst (!244)

• Remove Python 2.x leftover of specific super() call (!243)

• Use Gitlab for showing coverage and unit test reports (!241)

• Use black formatter and 88 chars/line for the code and rst files (!240)

• Add return values for correlation analysis to all base classes (!235)

• Added more linting for rst files (!239)

• Bump minimum version of tqdm to 4.60 (!238)

• Add prompt toggle to examples (!236)

• Added description to the ideal chemical potential how-to (!232)

• Added quotation marks to command in tox.ini to account for spaces in paths (!232)

• Fixed some typos and made minor modifications to the documentation (!232)

• Cleanup .gitignore (!233)

• More consistent molecule wrapping (!230)

• Added missing AnalysisBase parameters to modules (!231)

• created dark and light images and logo (!229)

• Add explicit stacklevel arguments to warnings in the library (!236)

• Switch to the build module (!234)

30 Chapter 5. Developer documentation

MAICoS Documentation

v0.7.2 (2023/01/09)

Philip Loche, Henrik Stooß

• Remove superfluous group wise wrapping (!225)

• Clarify unclear definition in Dieletric modules that could lead to wrong results (!228)

• Fixed windows string manipulation in test CI (!227)

• Added coverage posting on GitLab (!226)

• Corrected wrong comparison in correlation analysis and added tests

• Fixed link to changelog in pyproject.toml

• Migrated versioneer to pyproject.toml

• Added Support for Python 3.11

v0.7.1 (2023/01/01)

Henrik Stooß

• Fix upload to PyPi. This release is identical to v0.7.

v0.7 (2022/12/27)

Philip Loche, Simon Gravelle, Marc Sauter, Henrik Stooß, Kira Fischer, Alexander Schlaich, Philipp Staerk

• Make sure citation are only printed once (!260)

• Added MacOS pipeline, fixed wheels (!218)

• Fix CHANGELOG testing (!220)

• Added dielectric how-to (!208)

• Raise an error if unwrap=False and refgroup != None in dielectric modules (!215).

• Fix velocity profiles (!211)

• Added the Theory to the Dielectric docs (!201)

• Add a logger info for citations (!205)

• Rename Diporder to DiporderPlanar (!202)

• Change default behavior of DielectricPlanar: assume slab geometry by default (removing the xy flag and instead
introduce is_3d for 3d-periodic systems) (!202)

• Rename profile_mean to profile (!202)

• Major improvements on the documentation (!202)

• Add a check if the CHANGELOG.rst has been updated (!198)

• Fix behaviour of refgroup (!192)

• Resolve +1 is summed for epsilon for each atom group (#101, !193)

• Flatten file structure of analysis modules (#46, !196)

• Consistent mass unit in docs

• Porting examples to sphinx-gallery (!190)

5.1. Getting started 31

MAICoS Documentation

• Add jitter parameter to AnalysisBase (!183)

• Test output messages (!191)

• Fixed typo in DielectricPlanar docs (!194)

• Add Sphere modules (!175)

• Add ProfileBase class (!180)

• Slight restructure of the documenation (!189)

• Fix py311 windows

• Update build requirements for py310 and py311

• Merged setup.cfg into pyproject.toml (!187)

• Use versioneer for version info (!150)

• Update project urls (!185)

• Added repository link in the documentation (!184)

• Added windows CI/CD pipeline (!182)

• Update package discovery methods in setup.cfg

• Refactor CI script (!181)

• Fix DielectricCylinder (!165)

• Unified n_bins logging (#93, !179)

• Add MAICoS UML Class Diagramm (!178)

• Changed density calculation using range in np.histogram (!77)

• Update branching model in the documentation (!177)

• remove ./ from index.rst

• Improve documentation (!174)

• Added reference for SAXS calculations (!176)

• Update type of bin_pos in docs

• Added VelocityCylinder module

• Change behavior of sort_atomgroup (#88, !152)

• get_compound: option for returning indices of topology attributes

• Added Tutorial for non-spatial analysis module (!170)

• Check atomgroups if they contain any atoms (!172)

• New core attributes: bin_edges, bin_area, bin_volume, bin_pos & bin_width (!167)

• Use frame dict in structure.py (!169)

• Fix box dimensions for cylindrical boundaries (!168)

• rmax for cylindrical systems now uses correct dimensions

• Transport module documentation update (!164)

• Rename frame dict (!166)

• Implement SphereBase and ProfileSphereBase (!162)

32 Chapter 5. Developer documentation

MAICoS Documentation

• Relative path for data (!163)

• Create Linux wheels (!160)

• Fix Diporder tests (!161)

• norm=number: Declare bins with no atoms as nan (!157)

• Simplify weight functions (!158)

v0.6.1 (2022/09/26)

Henrik Stooß

• Fix the output of the ChemicalPotentialPlanar module (!173)

v0.6 (2022/09/01)

Philip Loche, Simon Gravelle, Srihas Velpuri, Henrik Stooß, Alexander Schlaich, Maximilian Becker, Kira Fischer

• Write total epsilon as defined in paper (!155)

• Introduce generic header (!149)

• Fix error estimate in EpsilonPlanar (!153)

• Fix sym option in EpsilonPlanar (!148)

• Use standard error of the mean instead of variance for error estimate (!147)

• Make all tests that write file use temporary file directory (!151)

• Rewrite Velocity module using ProfilePlanarBase (!142)

• Add RDFPlanar (!133)

• Refactor EpsilonPlanar (!139)

• Add a correlation time estimator (!137)

• Add frame dict to AnalysisBase (!138)

• Generalize comgroup attribute to all dimensions (!132)

• Output headers do not require residue names anymore (!134)

• Remove Debyer class (!130)

• Generalize concfreq attribute in AnalysisBase (!122)

• Fix broken binning in EpsilonPlanar (!125)

• Removed repairMolecules (!119)

• Added grouping and bin_method option (!117)

• Bump minimum MDAnalysis version to 2.2.0 (!117)

• Bump minimum Python version to 3.8 (!117)

• Use base units exclusively (!115)

• Higher tolerance for non-neutral systems (1E-4 instead of 1E-5)

• charge``neutral decorator uses ``check_compound now

• Add option to symmetrize profiles using ProfilePlanarBase (!116)

5.1. Getting started 33

MAICoS Documentation

• Fix comgroup parameter working only in the z direction (!116)

• Remove center option from ProfileBase (!116)

• Introduces new ProfilePlanarBase (!111)

• Split new DensityPlanar into ChemicalPotentialPlanar, DensityPlanar, TemperaturePlanar (!111)

• Convert more print statements into logger calls (!111)

• Fix wrong Diporder normalization + tests (!111)

• Add zmin and zmax to DensityPlanar and Diporder (!109)

• Fix EpsilonPlanar (!108)

• More tests for DensityPlanar, DensityCylinder, KineticEnergy and DipoleAngle (!104)

• Remove EpsilonBulk (!107)

• Add Code of Conduct (!97)

• Fix lint errors (!95)

v0.5.1 (2022/02/21)

Henrik Stooß

• Fix pypi installation (!98)

v0.5 (2022/02/17)

Philip Loche, Srihas Velpuri, Simon Gravelle

• Convert Tutorials into notebooks (!93)

• New docs design (!93)

• Build gitlab docs only on master branch (!94, #62)

• Removed oxygen binning from diporder (!85)

• Improved CI including tests for building and linting

• Create a consistent value of zmax in every frame (!79)

• Corrected README for pypi (!83)

• Use Results class for attributes and improved docs (!81)

• Bump minimum Python version to 3.7 (!80)

• Remove spaghetti code in __main__.py and introduce mdacli as cli server library. (!80)

• Remove SingleGroupAnalysisBase and MultiGroupAnalysisBase classes in favour of a unified
AnalysisBase class (!80)

• Change planar_base decorator to a PlanarBase class (!80)

• Rename modules to be consistent with PEP8 (density_planar -> DensityPlanar) (!80)

• Use Numpy’s docstyle for doc formatting (!80)

• Use Python’s powerful logger library instead of bare print (!80)

• Use Python 3.6 string formatting (!80)

34 Chapter 5. Developer documentation

MAICoS Documentation

• Remove _calculate_results methods. This method is covered by the _conclude method. (!80)

• Make results saving a public function (save) (!80)

• Added docstring Decorator for PlanarDocstring and verbose option (!80)

• Use MDAnalysis’s’ center_of_mass function for center of mass shifting (!80)

v0.4.1 (2021/12/17)

Philip Loche

• Fixed double counting of the box length in diporder (#58, !76)

v0.4 (2021/12/13)

Philip Loche, Simon Gravelle, Philipp Staerk, Henrik Stooß, Srihas Velpuri, Maximilian Becker

• Restructure docs and build docs for develop and release version

• Include README files into sphinx doc

• Add tutorial for density_cylinder module

• Add planar_base decorator unifying the syntax for planar analysis modules as denisty_planar,
epsilon_planar and diporder (!48)

• Corrected time_series module and created a test for it

• Added support for Python 3.9

• Created sphinx documentation

• Raise error if end is to small (#40)

• Add sorting of atom groups into molecules, enabling import of LAMMPS data

• Corrected plot format selection in dielectric_spectrum (!66)

• Fixed box dimension not set properly (!64)

• Add docs for timeseries modulees (!72)

• Fixed diporder does not compute the right quantities (#55, !75)

• Added support of calculating the chemical potentials for multiple atomgroups.

• Changed the codes behaviour of calculating the chemical potential if atomgroups contain multiple residues.

v0.3 (2020/03/03)

Philip Loche, Amanuel Wolde-Kidan

• Fixed errors occurring from changes in MDAnalysis

• Increased minimal requirements

• Use new ProgressBar from MDAnalysis

• Increased total_charge to account for numerical inaccuracy

5.1. Getting started 35

MAICoS Documentation

v0.2 (2020/04/03)

Philip Loche

• Added custom module

• Less noisy DeprecationWarning

• Fixed wrong center of mass velocity in velocity module

• Fixed documentation in diporder for P0

• Fixed debug if error in parsing

• Added checks for charge neutrality in dielectric analysis

• Added test files for an air-water trajectory and the diporder module

• Performance tweaks and tests for sfactor

• Check for molecular information in modules

v0.1 (2019/10/30)

Philip Loche

• first release out of the lab

5.2 How-to guides

Like a cooking recipe, How-to guides help you solve key problems and use cases. If you are a total MAICoS beginner,
you should start with the Getting started section.

5.2.1 Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) can be extracted using MAICoS. To follow this how-to guide, you should down-
load the topology and the trajectory files of the water system.

For more details on the theory see Small-angle X-ray scattering.

First, we import Matplotlib, MDAnalysis, NumPy and MAICoS:

import matplotlib.pyplot as plt
import MDAnalysis as mda
from MDAnalysis.analysis.rdf import InterRDF

import maicos
from maicos.lib.math import compute_form_factor, compute_rdf_structure_factor

The water system consists of 510 water molecules in the liquid state. The molecules are placed in a periodic cubic cell
with an extent of 25× 25× 25Å3.

36 Chapter 5. Developer documentation

MAICoS Documentation

Load Simulation Data

Create a MDAnalysis.core.universe.Universe and define a group containing only the oxygen atoms and a group
containing only the hydrogen atoms:

u = mda.Universe("water.tpr", "water.trr")

group_O = u.select_atoms("type O*")
group_H = u.select_atoms("type H*")

Extract small angle x-ray scattering (SAXS) intensities

Let us use the maicos.Saxs class of MAICoS and apply it to all atoms in the system:

saxs = maicos.Saxs(u.atoms).run(stop=30)

Note: SAXS computations are extensive calculations. Here, to get an overview of the scattering intensities, we reduce
the number of frames to be analyzed from 101 to 30, by adding the stop = 30 parameter to the run method. Due to
the small number of analyzed frames, the scattering intensities shown in this tutorial should not be used to draw any
conclusions from the data.

Extract the scattering vectors and the averaged structure factor and SAXS scattering intensities from the results
attribute:

scattering_values = saxs.results.scattering_vectors
structure_factors = saxs.results.structure_factors
scattering_intensities = saxs.results.scattering_intensities

The scattering intensities (and structure factors) are given as a 1D array, let us look at the 10 first lines:

print(scattering_intensities[:10])

[1.62620077 0.91205581 1.32501428 1.75529088 1.20605233 2.13058505
2.14645164 2.39313797 2.74842731 3.34680856]

By default, the binwidth in the recipocal (𝑞) space is 0.1−1.

We now plot the structure factor as well a the scattering intensities together.

fig1, ax1 = plt.subplots(nrows=2, sharex=True, layout="constrained")

ax1[0].plot(scattering_values, structure_factors)
ax1[1].plot(scattering_values, scattering_intensities)

ax1[-1].set_xlabel(r"q (1/Å)")

ax1[0].set_ylabel(r"structure factor $S(q)$")
ax1[1].set_ylabel(r"scattering intensities $I(q)$")
fig1.align_labels()

fig1.show()

5.2. How-to guides 37

https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe

MAICoS Documentation

The structure factor 𝑆(𝑞) and the scattering intensities 𝐼(𝑞) are related via

𝐼(𝑞) = [𝑓(𝑞)]2𝑆(𝑞)

where 𝑓(𝑞) are the atomic form factors. We will investigate the relation below in more details.

Computing oxygen and hydrogen contributions

An advantage of full atomistic simulations is their ability to investigate atomic contributions individually. Let us cal-
culate both oxygen and hydrogen contributions, respectively:

saxs_O = maicos.Saxs(group_O).run(stop=30)
saxs_H = maicos.Saxs(group_H).run(stop=30)

Let us plot the results for the structure factor, the squared form factor as well scattering intensities together. For comput-
ing the form factor we will use maicos.lib.math.compute_form_factor(). Note that here we access the results
directly from the results attribute without storing them in individual variables before:

fig2, ax2 = plt.subplots(nrows=3, sharex=True, layout="constrained")

structure factors
ax2[0].plot(

saxs_O.results.scattering_vectors,
saxs_O.results.structure_factors,

(continues on next page)

38 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

label="Oxygen",
)
ax2[0].plot(

saxs_H.results.scattering_vectors,
saxs_H.results.structure_factors,
label="Hydrogen",

)

form factors
ax2[1].plot(

saxs_O.results.scattering_vectors,
compute_form_factor(saxs_O.results.scattering_vectors, "O") ** 2,

)
ax2[1].plot(

saxs_H.results.scattering_vectors,
compute_form_factor(saxs_H.results.scattering_vectors, "H") ** 2,

)

scattering intensitie
ax2[2].plot(saxs_O.results.scattering_vectors, saxs_O.results.scattering_intensities)
ax2[2].plot(saxs_H.results.scattering_vectors, saxs_H.results.scattering_intensities)

ax2[-1].set_xlabel(r"q (1/Å)")
ax2[0].set_ylabel(r"$S(q)$")
ax2[1].set_ylabel(r"$f(q)^2$")
ax2[2].set_ylabel(r"$I(q)$")

ax2[0].legend()
fig2.align_labels()

fig2.show()

5.2. How-to guides 39

MAICoS Documentation

The figure above nicely shows that multiplying the structure factor 𝑆(𝑞) and the squared form factor 𝑓(𝑞)2 results in
the scattering intensity 𝐼(𝑞). Also, it is worth to notice that due to small form factor of hydrogen there is basically no
contribution of the hydrogen atoms to the total scattering intensity of water.

Connection of the structure factor to the radial distribution function

As in details explained in Small-angle X-ray scattering, the structure factor can be related to the radial distribution
function (RDF). We denote this structure factor by 𝑆FT(𝑞) since it is based on Fourier transforming the RDF. The
structure factor which can be directly obtained from the trajectory is denoted by 𝑆D(𝑞).

To relate these two we first calculate the oxygen-oxygen RDF up to half the box length using MDAnalysis.analysis.
rdf.InterRDF and save the result in variables for an easier access.

box_lengh = u.dimensions[0]

oo_inter_rdf = InterRDF(
g1=group_O, g2=group_O, range=(0, box_lengh / 2), exclude_same="residue"

).run()

r_oo = oo_inter_rdf.results.bins
rdf_oo = oo_inter_rdf.results.rdf

We use exclude_same="residue" to exclude atomic self contributions resulting in a large peak at 0. Next, we con-
vert the RDF into a structure factor using maicos.lib.math.compute_rdf_structure_factor() and the number

40 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF
https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF

MAICoS Documentation

density of the oxygens.

density = group_O.n_atoms / u.trajectory.ts.volume

q_rdf, struct_factor_rdf = compute_rdf_structure_factor(
rdf=rdf_oo, r=r_oo, density=density

)

Now we can plot everything together and find that the direct evaluation from above and the transformed RDF give the
same structure factor.

fig3, ax3 = plt.subplots(2, layout="constrained")

ax3[0].axhline(1, c="gray", ls="dashed")
ax3[0].plot(r_oo, rdf_oo, label="Oxygen-Oxygen")
ax3[0].set_xlabel("r (Å)")
ax3[0].set_ylabel("radial distribution function")
ax3[0].set_xlim(0, 10)

ax3[1].plot(q_rdf, struct_factor_rdf, label=r"S^FT")
ax3[1].plot(

saxs_O.results.scattering_vectors,
saxs_O.results.structure_factors,
label=r"S^D",
ls="dashed",

)

ax3[1].set_xlabel("q (1/Å)")
ax3[1].set_ylabel("structure factor $S(q)$")
ax3[1].set_xlim(0, 7)

ax3[1].legend()
ax3[0].legend()
fig3.align_labels()

fig3.show()

5.2. How-to guides 41

MAICoS Documentation

5.2.2 Ideal component of the chemical potential

What is the chemical potential?

Molecular dynamics simulations are often performed with a constant number of particles. When modelling confined
systems in molecular dynamics simulations, it is often assumed that the confined geometry extends infinitely, while
real systems have a finite size and are connected to a reservior many times larger than the confined space.

In this case, the number of particles in the system is not constant, but changes over time. This can be seen as a system
that is exchanging particles with a reservoir. The chemical potential describes how the free energy changes when
particles are added to (or removed from) the system. The chemical potential is therefore a very important quantity in
molecular dynamics simulations of confined systems.

If you want to know more about what the chemical potential means you can take a look at the references below1.
1 G. Cook and R.H. Dickerson. Understanding the chemical potential. American Journal of Physics, 1995. doi:10.1119/1.17844.

42 Chapter 5. Developer documentation

https://doi.org/10.1119/1.17844

MAICoS Documentation

How to calculate the ideal component of the chemical potential

The chemical potential can be split up into different parts

𝜇 = 𝜇0 + 𝜇ideal + 𝜇excess,

where 𝜇0 represents the standard potential of the substance, 𝜇ideal represents the component of the potential that would
also occur for an ideal gas and 𝜇excess represents the excess contribution generated from the interactions between the
particles. In the following calculations we are only interested in the ideal component.

For our case, we can calculate the ideal component of the potential according to

𝜇ideal = 𝑅𝑇 ln
(︀
𝜌Λ3

)︀
,

where Λ = ℏ
√︁

2𝜋
𝑚·𝑘B·𝑇 is the thermal De-Broglie wavelength, i.e. the mean De-Broglie wavelength at temperature

𝑇 . Furthermore, 𝑚 is the mass of the particles and 𝜌 is the mean density of the system. The mean density can be
calculated with MAICoS by using the Density modules. We will exemplify this in the following example using the
maicos.DensityPlanar module.

First we’ll import every module we need.

import MDAnalysis as mda
import numpy as np
from scipy import constants as const

import maicos

Now we define a function that calculates 𝜇 according to the equation above. We can calculate the Volume 𝑉 with
MAICoS by calculating the mean density and deviding it by the mass of the particles. Therefore our function takes the
density as input instead of the Volume.

def mu(rho: np.ndarray, T: float, m: float) -> np.ndarray:
"""Calculate the chemical potential.

The chemical potential is calculated from the density: mu = R T log(rho. / m)
"""
RT in KJ/mol
RT = T * const.Boltzmann * const.Avogadro / const.kilo

De Broglie (converted to angstrom)
db = (

np.sqrt(const.h**2 / (2 * np.pi * m * const.atomic_mass * const.Boltzmann * T))
/ const.angstrom

)

if np.all(rho > 0):
return RT * np.log(rho * db**3)

elif np.any(rho == 0):
return np.float64("-inf") * np.ones(rho.shape)

else:
return np.float64("nan") * np.ones(rho.shape)

If you’re also interested in the error of the chemical potential we can calculate it through propagation of uncertainty

5.2. How-to guides 43

MAICoS Documentation

from the error of the density, calculated by MAICoS. The error propagates according to

∆𝜇 =

⃒⃒⃒⃒
𝜕𝜇

𝜕𝜌

⃒⃒⃒⃒
·∆𝜌

=
𝑅𝑇

𝜌
·∆𝜌.

The implemented function looks like this.

def dmu(rho: np.ndarray, drho: np.ndarray, T: float) -> np.ndarray:
"""Calculate the error of the chemical potential.

The error is calculated from the density using propagation of uncertainty.
"""
RT = T * const.Boltzmann * const.Avogadro / const.kilo

if np.all(rho > 0):
return RT * (drho / rho)

else:
return np.float64("nan") * np.ones(rho.shape)

Finally, we can use those previously defined functions to calculate the chemical potential and its error for an example
trajectory called water, whose data can be downloaded from topology and trajectory. To calculate the mean
density we use the module maicos.DensityPlanar of MAICoS. This example uses a temperature of 300 K and a
mass of 18 u.

water = mda.Universe("water.tpr", "water.trr")
ana = maicos.DensityPlanar(water.atoms)
ana.run()
print("µ_id =", mu(ana.results.profile.mean(), 300, 18))
print("µ_id =", dmu(ana.results.profile.mean(), ana.results.dprofile.mean(), 300))

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.
/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-
→˓packages/maicos/core/base.py:456: UserWarning: Your data seems to be correlated with a␣
→˓correlation time which is 2.19 times larger than your step size. Consider increasing␣
→˓your step size by a factor of 4 to get a reasonable error estimate.
self.corrtime = correlation_analysis(self.timeseries)

µ_id = -12.050277646766348
µ_id = 0.041243491788978626

References

5.2.3 Dielectric profile calculation

Basic usage

In the following example, we will show how to calculate the dielectric profiles as described in Dielectric constant
measurement.

Before producing trajectories to calculate dielectric profiles, you will need to consider which information you will need
and thus need to print out. The dielectric profile calculators need unwrapped positions and charges of all charged

44 Chapter 5. Developer documentation

MAICoS Documentation

atoms in the system. Unwrapped refers to the fact that you will need either “repaired” molecules (which in GROMACS
trjconv with the -pbc mol option can do for you) or you will need to provide topology information for MAICoS
to repair molecules for you during the analysis. Note, however, that unwrapping adds overhead to your calculations.
Therefore, it is recommended to use a repaired trajectory if possible.

In the following, we will give an example of a trajectory of water confined by graphene sheets simulated via GRO-
MACS. We assume that the GROMACS topology is given by graphene_water.tpr and the trajectory is given by
graphene_water.xtc. Both can be downloaded under topology and trajectory, respectively.

From these files you can create a MDAnalysis universe object.

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np

import maicos

u = mda.Universe("graphene_water.tpr", "graphene_water.xtc")

This universe object can then be passed to the dielectric profile analysis object, documented in maicos.
DielectricPlanar. It expects you to pass the atom groups you want to perform the analysis for. In our example,
we have graphene walls and SPC/E water confined between them, where we are interested in the dielectric behavior
of the fluid. Thus, we will first select the water as an MDAnalysis atom group using MDAnalysis.core.groups.
AtomGroup.select_atoms(). In this case we select the water by filtering for the residue named SOL.

According to the discussion above, we use an unwrapped trajectory and set the unwrap = False keyword.

The simulation trajectory that we provide was simulated using Yeh-Berkowitz dipole correction. So we don’t want to
include dipole corrections, because we assume that our simulation data adequately represents a 2d-periodic system.
For systems that are not 2d-periodic, one should set the is_3d argument to True to include the dipole correction (see
Dielectric constant measurement or the section on boundary conditions down below).

Since we included a large vacuum region in our simulation that is not of interest for the dielectric profile, we can set the
refgroup to the group containing our water molecules. This will calculate the dielectric profile relative to the center
of mass of the water in the region of interest.

water = u.select_atoms("resname SOL")
Create the analysis object with the appropriate parameters.
analysis_obj = maicos.DielectricPlanar(water, bin_width=0.1, refgroup=water)

This creates the analysis object, but does not yet perform the analysis. To this end we call the member function run.
We may set the verbose keyword to True to get additional information like a progress bar.

Here you also have the chance to set start and stop keywords to specify which frames the analysis should start at
and where to end. One can also specify a step keyword to only analyze every step frames.

analysis_obj.run(step=5)

/home/docs/checkouts/readthedocs.org/user_builds/maicos/envs/main/lib/python3.9/site-
→˓packages/maicos/core/base.py:456: UserWarning: Your data seems to be correlated with a␣
→˓correlation time which is 2.55 times larger than your step size. Consider increasing␣
→˓your step size by a factor of 5 to get a reasonable error estimate.
self.corrtime = correlation_analysis(self.timeseries)

<maicos.modules.dielectricplanar.DielectricPlanar object at 0x7fad79bdfe50>

5.2. How-to guides 45

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

MAICoS Documentation

Here we use step = 5 to run a fast analysis. You may reduce the step parameter to gain a higher accuracy. Note that
the analysis issues a warning concerning the correlation time of the trajectory, which is automatically calculated as an
indication of how far apart the frames should be chosen to get a statistically uncertainty indicator estimate. For small
trajectories such as the one in this example, this estimate is not very reliable and one should perform the analysis for
longer trajectories for actual production runs.

Hence, we will ignore the warning for the purpose of this example. Now we are ready to plot the results. MAICoS
provides the outcome of the calculation as sub-attributes of the results attribute of the analysis object. The results
object contains several attributes that can be accessed directly. For example, the bin positions are stored in the bin_pos
attribute, the parallel and perpendicular dielectric profiles in the eps_par and eps_perp attributes respectively. (See
maicos.DielectricPlanar for a full list of attributes.)

For this example, we plot both profiles using matplotlib. Note that MAICoS always centers the system at the origin or
the selected refgroup, so here we set the limits of the x-axis to [-7, 7]. Then we can only show the relevant part of the
output (the system has a width of 14 Å).

fig, ax = plt.subplots(2, sharex=True)

z = analysis_obj.results.bin_pos

ax[0].plot(z, analysis_obj.results.eps_perp)
ax[1].plot(z, analysis_obj.results.eps_par)

ax[0].set_ylabel(r"$\varepsilon^{-1}_{\perp} - 1$")
ax[1].set_ylabel(r"$\varepsilon_{\parallel} - 1$")

ax[1].set_xlabel(r"z")

Only plot the actual physical system:
ax[0].set_xlim([-7, 7])
ax[1].set_xlim([-7, 7])

Also plot the bulk values for reference
ax[0].axhline(1 / 71 - 1, color="black", linestyle="dashed")
ax[1].axhline(71 - 1, color="black", linestyle="dashed")

fig.tight_layout()
plt.show()

46 Chapter 5. Developer documentation

MAICoS Documentation

A few notes on the results: The perpendicular component is given as the inverse of the dielectric profile, which is the
“natural” output (see Dielectric constant measurement for more details). Furthermore, the bulk values expected for the
SPC/E water model are given as reference lines.

Notice that the parallel component is better converged than the perpendicular component which in this very short
trajectory is still noisy. For trajectories with a duration of about 1 microsecond, the perpendicular component can be
expected to be converged.

Boundary Conditions

(See Dielectric constant measurement for a thorough discussion of the boundary conditions). Here we only note that
the is_3d flag has to be chosen carefully, depending on if one simulated a truly 3d periodic system or a 2d periodic
one. Seldomly, vacuum boundary conditions might have been used for Ewald summations instead of the more common
tin-foil boundary conditions. In this case, the vac flag should be set to True.

5.2. How-to guides 47

https://docs.python.org/3/library/constants.html#True

MAICoS Documentation

TIP4P Water and Molecules with Virtual Sites

One has to be careful when using the dielectric profile analysis for systems with virtual sites, such as TIP4P water. The
reason is that the virtual sites might not be included in the trajectory, but instead are only constructed by the MD engine
during the force calculation. (For example some LAMMPS fixes)

This problem can be circumvented by creating the virtual sites by hand. This is done by creating a transformation
function that is added to the universe. This function is called for every frame and can be used to create the virtual
sites. The following example shows how to do this for TIP4P/ water from a LAMMPS trajectory. Here we only shift
the oxygen charge along the H-O-H angle bisector by a distance of 0.105 Å, which is the distance between the oxygen
charge and the virtual site in the TIP4P/ water model.

def transform_lammps_tip4p(
oxygen_index_array: np.ndarray, distance: float

) -> mda.coordinates.timestep.Timestep:
"""Creates a transformation function where for lammps tip4p molecukes.

oxygen_index_array is the array of indices where ``atom.type == oxygen_type``.
I.e. given by ``np.where(universe.atoms.types == oxygen_type)[0]``.

``distance`` defines by how much the oxygen is moved in the H-O-H plane.
"""

def wrapped(timestep):
shift oxygen charge in case of tip4p
this_pos = timestep.positions
for j in oxygen_index_array:

-2 * vec_o + vec_h1 + vec_h2
vec = np.dot(np.array([-2, 1, 1]), this_pos[j : j + 3, :])
unit_vec = vec / np.linalg.norm(vec)
this_pos[j] += unit_vec * distance

return timestep

return wrapped

oxygen_index_array = u.select_atoms("type 2").indices

shift_tip4p_lammps = transform_lammps_tip4p(oxygen_index_array, 0.105)

u.trajectory.add_transformations(shift_tip4p_lammps)

48 Chapter 5. Developer documentation

MAICoS Documentation

Preliminary Output

As the dielectric analysis is usually run for long trajectories, analysis can take a while. Hence, it is useful to get some
preliminary output to see how the analysis is progressing. Use the concfreq keyword to specify how often the analysis
should output the current results into data files on the disk. The concfreq keyword is given in units of frames. For
example, if concfreq = 100, the analysis will output the current results to the data files every 100 frames.

5.2.4 Pair distribution functions

Basic usage

In the following example, we will show how to calculate the two-dimensional planar pair distribution functions.

In the following, we will give an example of a trajectory of water confined by graphene sheets simulated via GRO-
MACS. We assume that the GROMACS topology is given by graphene_water.tpr and the trajectory is given by
graphene_water.xtc. Both can be downloaded under topology and trajectory, respectively.

From these files you can create a MDAnalysis universe object.

We begin by importing the necessary modules.

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np

import maicos

Next, we proceed with the creation of a MDAnalysis universe object, from which we further select the water molecules
using the resname selector.

u = mda.Universe("./graphene_water.tpr", "graphene_water.xtc")

This universe object can then be passed to maicos.modules.pdfplanar.PDFPlanar analysis object. It expects you
to pass the atom groups you want to perform the analysis for. In our example, we have graphene walls and SPC/E water
confined between them, where we are interested in the dielectric behavior of the fluid. Thus, we will first select the
water as an MDAnalysis atom group using MDAnalysis.core.groups.AtomGroup.select_atoms(). In this case
we select the water by filtering for the residue named SOL.

water = u.select_atoms("resname SOL")

ana_obj = maicos.PDFPlanar(
water,
water,
dzheight=0.25,
dim=2,
pdf_bin_width=0.2,
refgroup=water,
zmin=-5.0,
zmax=0,

)

Next, we can run the analysis over the trajectory. To this end we call the member function run. We may set the verbose
keyword to True to get additional information such a a progress bar.

Here you also have the chance to set start and stop keywords to specify which frames the analysis should start at
and where to end. One can also specify a step keyword to only analyze every step frames.

5.2. How-to guides 49

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms

MAICoS Documentation

ana_obj.run(verbose=True, step=1)

0%| | 0/2001 [00:00<?, ?it/s]
0%| | 3/2001 [00:00<01:10, 28.26it/s]
0%| | 6/2001 [00:00<01:10, 28.37it/s]
0%| | 9/2001 [00:00<01:10, 28.33it/s]
1%| | 12/2001 [00:00<01:10, 28.29it/s]
1%| | 15/2001 [00:00<01:10, 28.10it/s]
1%| | 18/2001 [00:00<01:10, 28.09it/s]
1%| | 21/2001 [00:00<01:10, 28.11it/s]
1%| | 24/2001 [00:00<01:10, 28.05it/s]
1%| | 27/2001 [00:00<01:10, 28.03it/s]
1%| | 30/2001 [00:01<01:10, 28.01it/s]
2%| | 33/2001 [00:01<01:09, 28.12it/s]
2%| | 36/2001 [00:01<01:10, 28.06it/s]
2%| | 39/2001 [00:01<01:09, 28.08it/s]
2%| | 42/2001 [00:01<01:09, 28.07it/s]
2%| | 45/2001 [00:01<01:10, 27.82it/s]
2%| | 48/2001 [00:01<01:09, 27.95it/s]
3%| | 51/2001 [00:01<01:09, 27.98it/s]
3%| | 54/2001 [00:01<01:09, 27.94it/s]
3%| | 57/2001 [00:02<01:09, 27.95it/s]
3%| | 60/2001 [00:02<01:09, 28.05it/s]
3%| | 63/2001 [00:02<01:09, 28.02it/s]
3%| | 66/2001 [00:02<01:08, 28.06it/s]
3%| | 69/2001 [00:02<01:08, 28.02it/s]
4%| | 72/2001 [00:02<01:08, 28.05it/s]
4%| | 75/2001 [00:02<01:08, 28.00it/s]
4%| | 78/2001 [00:02<01:08, 27.96it/s]
4%| | 81/2001 [00:02<01:08, 27.95it/s]
4%| | 84/2001 [00:02<01:08, 27.92it/s]
4%| | 87/2001 [00:03<01:08, 27.95it/s]
4%| | 90/2001 [00:03<01:08, 27.95it/s]
5%| | 93/2001 [00:03<01:08, 27.97it/s]
5%| | 96/2001 [00:03<01:08, 27.97it/s]
5%| | 99/2001 [00:03<01:07, 28.03it/s]
5%| | 102/2001 [00:03<01:07, 28.10it/s]
5%| | 105/2001 [00:03<01:07, 28.14it/s]
5%| | 108/2001 [00:03<01:07, 28.02it/s]
6%| | 111/2001 [00:03<01:07, 28.06it/s]
6%| | 114/2001 [00:04<01:07, 28.00it/s]
6%| | 117/2001 [00:04<01:07, 28.05it/s]
6%| | 120/2001 [00:04<01:07, 28.07it/s]
6%| | 123/2001 [00:04<01:06, 28.04it/s]
6%| | 126/2001 [00:04<01:06, 27.99it/s]
6%| | 129/2001 [00:04<01:06, 27.96it/s]
7%| | 132/2001 [00:04<01:06, 28.06it/s]
7%| | 135/2001 [00:04<01:06, 28.08it/s]
7%| | 138/2001 [00:04<01:06, 28.05it/s]
7%| | 141/2001 [00:05<01:06, 28.04it/s]
7%| | 144/2001 [00:05<01:06, 28.08it/s]
7%| | 147/2001 [00:05<01:06, 28.06it/s]

(continues on next page)

50 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

7%| | 150/2001 [00:05<01:05, 28.08it/s]
8%| | 153/2001 [00:05<01:05, 28.05it/s]
8%| | 156/2001 [00:05<01:05, 28.08it/s]
8%| | 159/2001 [00:05<01:05, 28.08it/s]
8%| | 162/2001 [00:05<01:05, 28.14it/s]
8%| | 165/2001 [00:05<01:05, 28.18it/s]
8%| | 168/2001 [00:05<01:04, 28.28it/s]
9%| | 171/2001 [00:06<01:04, 28.17it/s]
9%| | 174/2001 [00:06<01:04, 28.19it/s]
9%| | 177/2001 [00:06<01:04, 28.15it/s]
9%| | 180/2001 [00:06<01:04, 28.16it/s]
9%| | 183/2001 [00:06<01:04, 28.03it/s]
9%| | 186/2001 [00:06<01:04, 28.13it/s]
9%| | 189/2001 [00:06<01:04, 28.12it/s]

10%| | 192/2001 [00:06<01:04, 28.05it/s]
10%| | 195/2001 [00:06<01:04, 27.96it/s]
10%| | 198/2001 [00:07<01:04, 27.98it/s]
10%| | 201/2001 [00:07<01:04, 28.04it/s]
10%| | 204/2001 [00:07<01:03, 28.11it/s]
10%| | 207/2001 [00:07<01:03, 28.13it/s]
10%| | 210/2001 [00:07<01:03, 28.11it/s]
11%| | 213/2001 [00:07<01:03, 28.02it/s]
11%| | 216/2001 [00:07<01:03, 27.92it/s]
11%| | 219/2001 [00:07<01:03, 27.96it/s]
11%| | 222/2001 [00:07<01:03, 28.02it/s]
11%| | 225/2001 [00:08<01:03, 28.11it/s]
11%| | 228/2001 [00:08<01:02, 28.19it/s]
12%| | 231/2001 [00:08<01:02, 28.15it/s]
12%| | 234/2001 [00:08<01:02, 28.17it/s]
12%| | 237/2001 [00:08<01:02, 28.07it/s]
12%| | 240/2001 [00:08<01:02, 28.07it/s]
12%| | 243/2001 [00:08<01:02, 28.05it/s]
12%| | 246/2001 [00:08<01:02, 28.06it/s]
12%| | 249/2001 [00:08<01:02, 27.98it/s]
13%| | 252/2001 [00:08<01:02, 27.89it/s]
13%| | 255/2001 [00:09<01:02, 28.02it/s]
13%| | 258/2001 [00:09<01:02, 28.07it/s]
13%| | 261/2001 [00:09<01:01, 28.10it/s]
13%| | 264/2001 [00:09<01:01, 28.10it/s]
13%| | 267/2001 [00:09<01:01, 28.10it/s]
13%| | 270/2001 [00:09<01:01, 28.18it/s]
14%| | 273/2001 [00:09<01:01, 28.07it/s]
14%| | 276/2001 [00:09<01:01, 28.12it/s]
14%| | 279/2001 [00:09<01:01, 28.19it/s]
14%| | 282/2001 [00:10<01:01, 28.13it/s]
14%| | 285/2001 [00:10<01:00, 28.14it/s]
14%| | 288/2001 [00:10<01:01, 28.07it/s]
15%| | 291/2001 [00:10<01:01, 27.97it/s]
15%| | 294/2001 [00:10<01:01, 27.96it/s]
15%| | 297/2001 [00:10<01:00, 28.05it/s]
15%| | 300/2001 [00:10<01:00, 27.99it/s]
15%| | 303/2001 [00:10<01:00, 27.94it/s]

(continues on next page)

5.2. How-to guides 51

MAICoS Documentation

(continued from previous page)

15%| | 306/2001 [00:10<01:00, 27.94it/s]
15%| | 309/2001 [00:11<01:00, 27.90it/s]
16%| | 312/2001 [00:11<01:00, 27.92it/s]
16%| | 315/2001 [00:11<01:00, 28.01it/s]
16%| | 318/2001 [00:11<00:59, 28.09it/s]
16%| | 321/2001 [00:11<00:59, 28.17it/s]
16%| | 324/2001 [00:11<00:59, 28.27it/s]
16%| | 327/2001 [00:11<00:59, 28.27it/s]
16%| | 330/2001 [00:11<00:59, 28.31it/s]
17%| | 333/2001 [00:11<00:58, 28.32it/s]
17%| | 336/2001 [00:11<00:58, 28.30it/s]
17%| | 339/2001 [00:12<00:58, 28.28it/s]
17%| | 342/2001 [00:12<00:58, 28.32it/s]
17%| | 345/2001 [00:12<00:58, 28.31it/s]
17%| | 348/2001 [00:12<00:58, 28.22it/s]
18%| | 351/2001 [00:12<00:58, 28.16it/s]
18%| | 354/2001 [00:12<00:58, 28.11it/s]
18%| | 357/2001 [00:12<00:58, 28.13it/s]
18%| | 360/2001 [00:12<00:58, 28.09it/s]
18%| | 363/2001 [00:12<00:58, 28.07it/s]
18%| | 366/2001 [00:13<00:58, 28.03it/s]
18%| | 369/2001 [00:13<00:58, 28.05it/s]
19%| | 372/2001 [00:13<00:57, 28.17it/s]
19%| | 375/2001 [00:13<00:57, 28.13it/s]
19%| | 378/2001 [00:13<00:57, 28.17it/s]
19%| | 381/2001 [00:13<00:57, 28.20it/s]
19%| | 384/2001 [00:13<00:57, 28.12it/s]
19%| | 387/2001 [00:13<00:57, 28.18it/s]
19%| | 390/2001 [00:13<00:56, 28.28it/s]
20%| | 393/2001 [00:13<00:56, 28.35it/s]
20%| | 396/2001 [00:14<00:56, 28.29it/s]
20%| | 399/2001 [00:14<00:56, 28.28it/s]
20%| | 402/2001 [00:14<00:56, 28.31it/s]
20%| | 405/2001 [00:14<00:56, 28.25it/s]
20%| | 408/2001 [00:14<00:56, 28.18it/s]
21%| | 411/2001 [00:14<00:56, 28.19it/s]
21%| | 414/2001 [00:14<00:56, 28.20it/s]
21%| | 417/2001 [00:14<00:56, 28.23it/s]
21%| | 420/2001 [00:14<00:56, 28.07it/s]
21%| | 423/2001 [00:15<00:56, 28.00it/s]
21%| | 426/2001 [00:15<00:56, 28.04it/s]
21%| | 429/2001 [00:15<00:56, 28.03it/s]
22%| | 432/2001 [00:15<00:55, 28.06it/s]
22%| | 435/2001 [00:15<00:55, 28.10it/s]
22%| | 438/2001 [00:15<00:55, 28.07it/s]
22%| | 441/2001 [00:15<00:55, 28.10it/s]
22%| | 444/2001 [00:15<00:55, 28.17it/s]
22%| | 447/2001 [00:15<00:57, 27.14it/s]
22%| | 450/2001 [00:16<00:57, 26.96it/s]
23%| | 453/2001 [00:16<00:56, 27.36it/s]
23%| | 456/2001 [00:16<00:55, 27.61it/s]
23%| | 459/2001 [00:16<00:55, 27.83it/s]

(continues on next page)

52 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

23%| | 462/2001 [00:16<00:55, 27.96it/s]
23%| | 465/2001 [00:16<00:54, 28.05it/s]
23%| | 468/2001 [00:16<00:54, 28.07it/s]
24%| | 471/2001 [00:16<00:54, 28.05it/s]
24%| | 474/2001 [00:16<00:54, 27.99it/s]
24%| | 477/2001 [00:17<00:54, 27.79it/s]
24%| | 480/2001 [00:17<00:55, 27.61it/s]
24%| | 483/2001 [00:17<00:54, 27.82it/s]
24%| | 486/2001 [00:17<00:54, 27.98it/s]
24%| | 489/2001 [00:17<00:54, 27.91it/s]
25%| | 492/2001 [00:17<00:53, 27.96it/s]
25%| | 495/2001 [00:17<00:53, 28.08it/s]
25%| | 498/2001 [00:17<00:53, 28.24it/s]
25%| | 501/2001 [00:17<00:53, 28.15it/s]
25%| | 504/2001 [00:17<00:53, 28.18it/s]
25%| | 507/2001 [00:18<00:52, 28.22it/s]
25%| | 510/2001 [00:18<00:52, 28.27it/s]
26%| | 513/2001 [00:18<00:52, 28.25it/s]
26%| | 516/2001 [00:18<00:52, 28.28it/s]
26%| | 519/2001 [00:18<00:52, 28.17it/s]
26%| | 522/2001 [00:18<00:52, 28.16it/s]
26%| | 525/2001 [00:18<00:52, 28.10it/s]
26%| | 528/2001 [00:18<00:52, 28.00it/s]
27%| | 531/2001 [00:18<00:52, 28.02it/s]
27%| | 534/2001 [00:19<00:52, 28.01it/s]
27%| | 537/2001 [00:19<00:52, 28.03it/s]
27%| | 540/2001 [00:19<00:51, 28.13it/s]
27%| | 543/2001 [00:19<00:51, 28.18it/s]
27%| | 546/2001 [00:19<00:51, 28.17it/s]
27%| | 549/2001 [00:19<00:51, 28.19it/s]
28%| | 552/2001 [00:19<00:51, 28.20it/s]
28%| | 555/2001 [00:19<00:51, 28.15it/s]
28%| | 558/2001 [00:19<00:51, 28.15it/s]
28%| | 561/2001 [00:19<00:51, 28.16it/s]
28%| | 564/2001 [00:20<00:50, 28.19it/s]
28%| | 567/2001 [00:20<00:50, 28.22it/s]
28%| | 570/2001 [00:20<00:50, 28.30it/s]
29%| | 573/2001 [00:20<00:50, 28.21it/s]
29%| | 576/2001 [00:20<00:50, 28.13it/s]
29%| | 579/2001 [00:20<00:50, 28.10it/s]
29%| | 582/2001 [00:20<00:50, 28.14it/s]
29%| | 585/2001 [00:20<00:50, 28.02it/s]
29%| | 588/2001 [00:20<00:50, 27.93it/s]
30%| | 591/2001 [00:21<00:50, 27.88it/s]
30%| | 594/2001 [00:21<00:50, 28.05it/s]
30%| | 597/2001 [00:21<00:51, 27.13it/s]
30%| | 600/2001 [00:21<00:52, 26.61it/s]
30%| | 603/2001 [00:21<00:53, 26.22it/s]
30%| | 606/2001 [00:21<00:53, 25.92it/s]
30%| | 609/2001 [00:21<00:52, 26.51it/s]
31%| | 612/2001 [00:21<00:51, 26.93it/s]
31%| | 615/2001 [00:21<00:50, 27.29it/s]

(continues on next page)

5.2. How-to guides 53

MAICoS Documentation

(continued from previous page)

31%| | 618/2001 [00:22<00:50, 27.49it/s]
31%| | 621/2001 [00:22<00:49, 27.72it/s]
31%| | 624/2001 [00:22<00:49, 27.86it/s]
31%| | 627/2001 [00:22<00:49, 27.96it/s]
31%| | 630/2001 [00:22<00:49, 27.94it/s]
32%| | 633/2001 [00:22<00:48, 27.97it/s]
32%| | 636/2001 [00:22<00:48, 27.95it/s]
32%| | 639/2001 [00:22<00:48, 27.94it/s]
32%| | 642/2001 [00:22<00:48, 27.99it/s]
32%| | 645/2001 [00:23<00:48, 27.99it/s]
32%| | 648/2001 [00:23<00:48, 28.06it/s]
33%| | 651/2001 [00:23<00:48, 28.11it/s]
33%| | 654/2001 [00:23<00:47, 28.17it/s]
33%| | 657/2001 [00:23<00:47, 28.22it/s]
33%| | 660/2001 [00:23<00:47, 28.19it/s]
33%| | 663/2001 [00:23<00:47, 28.22it/s]
33%| | 666/2001 [00:23<00:47, 28.20it/s]
33%| | 669/2001 [00:23<00:47, 28.22it/s]
34%| | 672/2001 [00:23<00:48, 27.51it/s]
34%| | 675/2001 [00:24<00:47, 27.68it/s]
34%| | 678/2001 [00:24<00:47, 27.83it/s]
34%| | 681/2001 [00:24<00:47, 27.87it/s]
34%| | 684/2001 [00:24<00:47, 27.92it/s]
34%| | 687/2001 [00:24<00:46, 28.04it/s]
34%| | 690/2001 [00:24<00:46, 28.14it/s]
35%| | 693/2001 [00:24<00:46, 28.13it/s]
35%| | 696/2001 [00:24<00:46, 28.08it/s]
35%| | 699/2001 [00:24<00:46, 28.04it/s]
35%| | 702/2001 [00:25<00:46, 27.94it/s]
35%| | 705/2001 [00:25<00:46, 28.04it/s]
35%| | 708/2001 [00:25<00:46, 28.03it/s]
36%| | 711/2001 [00:25<00:45, 28.11it/s]
36%| | 714/2001 [00:25<00:45, 28.11it/s]
36%| | 717/2001 [00:25<00:45, 28.11it/s]
36%| | 720/2001 [00:25<00:45, 28.07it/s]
36%| | 723/2001 [00:25<00:45, 28.01it/s]
36%| | 726/2001 [00:25<00:45, 28.09it/s]
36%| | 729/2001 [00:26<00:45, 28.13it/s]
37%| | 732/2001 [00:26<00:45, 28.03it/s]
37%| | 735/2001 [00:26<00:45, 28.10it/s]
37%| | 738/2001 [00:26<00:45, 28.06it/s]
37%| | 741/2001 [00:26<00:44, 28.17it/s]
37%| | 744/2001 [00:26<00:44, 28.06it/s]
37%| | 747/2001 [00:26<00:45, 27.63it/s]
37%| | 750/2001 [00:26<00:45, 27.76it/s]
38%| | 753/2001 [00:26<00:45, 27.18it/s]
38%| | 756/2001 [00:27<00:46, 26.55it/s]
38%| | 759/2001 [00:27<00:46, 26.53it/s]
38%| | 762/2001 [00:27<00:46, 26.93it/s]
38%| | 765/2001 [00:27<00:45, 27.29it/s]
38%| | 768/2001 [00:27<00:44, 27.56it/s]
39%| | 771/2001 [00:27<00:44, 27.81it/s]

(continues on next page)

54 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

39%| | 774/2001 [00:27<00:44, 27.82it/s]
39%| | 777/2001 [00:27<00:43, 27.83it/s]
39%| | 780/2001 [00:27<00:43, 27.94it/s]
39%| | 783/2001 [00:27<00:43, 28.14it/s]
39%| | 786/2001 [00:28<00:43, 28.14it/s]
39%| | 789/2001 [00:28<00:42, 28.25it/s]
40%| | 792/2001 [00:28<00:42, 28.30it/s]
40%| | 795/2001 [00:28<00:42, 28.27it/s]
40%| | 798/2001 [00:28<00:42, 28.22it/s]
40%| | 801/2001 [00:28<00:42, 28.10it/s]
40%| | 804/2001 [00:28<00:42, 28.15it/s]
40%| | 807/2001 [00:28<00:42, 28.14it/s]
40%| | 810/2001 [00:28<00:42, 28.09it/s]
41%| | 813/2001 [00:29<00:42, 28.09it/s]
41%| | 816/2001 [00:29<00:42, 28.17it/s]
41%| | 819/2001 [00:29<00:41, 28.18it/s]
41%| | 822/2001 [00:29<00:41, 28.26it/s]
41%| | 825/2001 [00:29<00:41, 28.30it/s]
41%| | 828/2001 [00:29<00:41, 28.21it/s]
42%| | 831/2001 [00:29<00:41, 28.15it/s]
42%| | 834/2001 [00:29<00:41, 28.15it/s]
42%| | 837/2001 [00:29<00:41, 28.20it/s]
42%| | 840/2001 [00:29<00:41, 28.28it/s]
42%| | 843/2001 [00:30<00:41, 28.22it/s]
42%| | 846/2001 [00:30<00:40, 28.18it/s]
42%| | 849/2001 [00:30<00:40, 28.14it/s]
43%| | 852/2001 [00:30<00:40, 28.03it/s]
43%| | 855/2001 [00:30<00:40, 28.06it/s]
43%| | 858/2001 [00:30<00:40, 28.10it/s]
43%| | 861/2001 [00:30<00:40, 28.10it/s]
43%| | 864/2001 [00:30<00:40, 28.05it/s]
43%| | 867/2001 [00:30<00:40, 27.98it/s]
43%| | 870/2001 [00:31<00:40, 27.90it/s]
44%| | 873/2001 [00:31<00:40, 28.02it/s]
44%| | 876/2001 [00:31<00:40, 28.03it/s]
44%| | 879/2001 [00:31<00:39, 28.13it/s]
44%| | 882/2001 [00:31<00:39, 28.20it/s]
44%| | 885/2001 [00:31<00:39, 28.30it/s]
44%| | 888/2001 [00:31<00:39, 28.29it/s]
45%| | 891/2001 [00:31<00:39, 28.32it/s]
45%| | 894/2001 [00:31<00:39, 28.28it/s]
45%| | 897/2001 [00:32<00:38, 28.37it/s]
45%| | 900/2001 [00:32<00:38, 28.36it/s]
45%| | 903/2001 [00:32<00:38, 28.26it/s]
45%| | 906/2001 [00:32<00:38, 28.19it/s]
45%| | 909/2001 [00:32<00:38, 28.15it/s]
46%| | 912/2001 [00:32<00:38, 28.20it/s]
46%| | 915/2001 [00:32<00:38, 28.21it/s]
46%| | 918/2001 [00:32<00:38, 28.24it/s]
46%| | 921/2001 [00:32<00:38, 28.20it/s]
46%| | 924/2001 [00:32<00:38, 28.08it/s]
46%| | 927/2001 [00:33<00:38, 28.00it/s]

(continues on next page)

5.2. How-to guides 55

MAICoS Documentation

(continued from previous page)

46%| | 930/2001 [00:33<00:38, 28.01it/s]
47%| | 933/2001 [00:33<00:38, 28.00it/s]
47%| | 936/2001 [00:33<00:38, 28.02it/s]
47%| | 939/2001 [00:33<00:37, 28.06it/s]
47%| | 942/2001 [00:33<00:37, 28.18it/s]
47%| | 945/2001 [00:33<00:37, 28.20it/s]
47%| | 948/2001 [00:33<00:37, 28.26it/s]
48%| | 951/2001 [00:33<00:37, 28.22it/s]
48%| | 954/2001 [00:34<00:37, 28.17it/s]
48%| | 957/2001 [00:34<00:37, 28.16it/s]
48%| | 960/2001 [00:34<00:37, 28.09it/s]
48%| | 963/2001 [00:34<00:36, 28.14it/s]
48%| | 966/2001 [00:34<00:36, 28.09it/s]
48%| | 969/2001 [00:34<00:36, 28.12it/s]
49%| | 972/2001 [00:34<00:36, 28.16it/s]
49%| | 975/2001 [00:34<00:36, 28.12it/s]
49%| | 978/2001 [00:34<00:36, 28.11it/s]
49%| | 981/2001 [00:35<00:36, 28.03it/s]
49%| | 984/2001 [00:35<00:36, 27.99it/s]
49%| | 987/2001 [00:35<00:36, 28.04it/s]
49%| | 990/2001 [00:35<00:35, 28.11it/s]
50%| | 993/2001 [00:35<00:35, 28.18it/s]
50%| | 996/2001 [00:35<00:35, 28.20it/s]
50%| | 999/2001 [00:35<00:35, 28.28it/s]
50%| | 1002/2001 [00:35<00:35, 28.21it/s]
50%| | 1005/2001 [00:35<00:35, 28.10it/s]
50%| | 1008/2001 [00:35<00:35, 28.05it/s]
51%| | 1011/2001 [00:36<00:35, 28.05it/s]
51%| | 1014/2001 [00:36<00:35, 28.14it/s]
51%| | 1017/2001 [00:36<00:35, 28.03it/s]
51%| | 1020/2001 [00:36<00:34, 28.12it/s]
51%| | 1023/2001 [00:36<00:34, 27.99it/s]
51%| | 1026/2001 [00:36<00:34, 28.01it/s]
51%| | 1029/2001 [00:36<00:34, 27.98it/s]
52%| | 1032/2001 [00:36<00:34, 27.97it/s]
52%| | 1035/2001 [00:36<00:34, 27.95it/s]
52%| | 1038/2001 [00:37<00:34, 27.99it/s]
52%| | 1041/2001 [00:37<00:34, 28.05it/s]
52%| | 1044/2001 [00:37<00:33, 28.23it/s]
52%| | 1047/2001 [00:37<00:33, 28.27it/s]
52%| | 1050/2001 [00:37<00:33, 28.25it/s]
53%| | 1053/2001 [00:37<00:33, 28.19it/s]
53%| | 1056/2001 [00:37<00:33, 28.17it/s]
53%| | 1059/2001 [00:37<00:33, 28.25it/s]
53%| | 1062/2001 [00:37<00:33, 28.27it/s]
53%| | 1065/2001 [00:37<00:33, 28.28it/s]
53%| | 1068/2001 [00:38<00:32, 28.39it/s]
54%| | 1071/2001 [00:38<00:32, 28.44it/s]
54%| | 1074/2001 [00:38<00:32, 28.47it/s]
54%| | 1077/2001 [00:38<00:32, 28.41it/s]
54%| | 1080/2001 [00:38<00:32, 28.23it/s]
54%| | 1083/2001 [00:38<00:32, 28.22it/s]

(continues on next page)

56 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

54%| | 1086/2001 [00:38<00:32, 28.11it/s]
54%| | 1089/2001 [00:38<00:32, 28.04it/s]
55%| | 1092/2001 [00:38<00:32, 28.03it/s]
55%| | 1095/2001 [00:39<00:32, 27.97it/s]
55%| | 1098/2001 [00:39<00:32, 28.00it/s]
55%| | 1101/2001 [00:39<00:32, 28.06it/s]
55%| | 1104/2001 [00:39<00:31, 28.18it/s]
55%| | 1107/2001 [00:39<00:31, 28.24it/s]
55%| | 1110/2001 [00:39<00:31, 28.17it/s]
56%| | 1113/2001 [00:39<00:31, 28.07it/s]
56%| | 1116/2001 [00:39<00:31, 28.25it/s]
56%| | 1119/2001 [00:39<00:31, 28.26it/s]
56%| | 1122/2001 [00:40<00:31, 28.31it/s]
56%| | 1125/2001 [00:40<00:30, 28.27it/s]
56%| | 1128/2001 [00:40<00:31, 28.12it/s]
57%| | 1131/2001 [00:40<00:30, 28.12it/s]
57%| | 1134/2001 [00:40<00:30, 28.14it/s]
57%| | 1137/2001 [00:40<00:30, 28.05it/s]
57%| | 1140/2001 [00:40<00:30, 28.10it/s]
57%| | 1143/2001 [00:40<00:30, 28.11it/s]
57%| | 1146/2001 [00:40<00:30, 28.07it/s]
57%| | 1149/2001 [00:40<00:30, 28.01it/s]
58%| | 1152/2001 [00:41<00:30, 27.95it/s]
58%| | 1155/2001 [00:41<00:30, 28.01it/s]
58%| | 1158/2001 [00:41<00:29, 28.14it/s]
58%| | 1161/2001 [00:41<00:29, 28.19it/s]
58%| | 1164/2001 [00:41<00:29, 28.15it/s]
58%| | 1167/2001 [00:41<00:29, 28.11it/s]
58%| | 1170/2001 [00:41<00:29, 28.11it/s]
59%| | 1173/2001 [00:41<00:29, 28.20it/s]
59%| | 1176/2001 [00:41<00:29, 28.16it/s]
59%| | 1179/2001 [00:42<00:29, 28.17it/s]
59%| | 1182/2001 [00:42<00:29, 28.11it/s]
59%| | 1185/2001 [00:42<00:29, 28.10it/s]
59%| | 1188/2001 [00:42<00:28, 28.12it/s]
60%| | 1191/2001 [00:42<00:29, 27.76it/s]
60%| | 1194/2001 [00:42<00:28, 27.86it/s]
60%| | 1197/2001 [00:42<00:28, 27.91it/s]
60%| | 1200/2001 [00:42<00:28, 27.89it/s]
60%| | 1203/2001 [00:42<00:28, 27.82it/s]
60%| | 1206/2001 [00:43<00:28, 27.76it/s]
60%| | 1209/2001 [00:43<00:28, 27.86it/s]
61%| | 1212/2001 [00:43<00:28, 28.01it/s]
61%| | 1215/2001 [00:43<00:27, 28.08it/s]
61%| | 1218/2001 [00:43<00:27, 28.18it/s]
61%| | 1221/2001 [00:43<00:27, 28.29it/s]
61%| | 1224/2001 [00:43<00:27, 28.30it/s]
61%| | 1227/2001 [00:43<00:27, 28.22it/s]
61%| | 1230/2001 [00:43<00:27, 28.20it/s]
62%| | 1233/2001 [00:43<00:27, 28.19it/s]
62%| | 1236/2001 [00:44<00:27, 28.24it/s]
62%| | 1239/2001 [00:44<00:26, 28.30it/s]

(continues on next page)

5.2. How-to guides 57

MAICoS Documentation

(continued from previous page)

62%| | 1242/2001 [00:44<00:26, 28.41it/s]
62%| | 1245/2001 [00:44<00:26, 28.32it/s]
62%| | 1248/2001 [00:44<00:26, 28.19it/s]
63%| | 1251/2001 [00:44<00:26, 28.22it/s]
63%| | 1254/2001 [00:44<00:26, 28.22it/s]
63%| | 1257/2001 [00:44<00:26, 28.20it/s]
63%| | 1260/2001 [00:44<00:26, 28.18it/s]
63%| | 1263/2001 [00:45<00:26, 27.96it/s]
63%| | 1266/2001 [00:45<00:26, 27.90it/s]
63%| | 1269/2001 [00:45<00:26, 28.03it/s]
64%| | 1272/2001 [00:45<00:25, 28.14it/s]
64%| | 1275/2001 [00:45<00:25, 28.18it/s]
64%| | 1278/2001 [00:45<00:25, 28.18it/s]
64%| | 1281/2001 [00:45<00:25, 28.17it/s]
64%| | 1284/2001 [00:45<00:25, 28.20it/s]
64%| | 1287/2001 [00:45<00:25, 28.26it/s]
64%| | 1290/2001 [00:45<00:25, 28.22it/s]
65%| | 1293/2001 [00:46<00:25, 28.16it/s]
65%| | 1296/2001 [00:46<00:25, 28.19it/s]
65%| | 1299/2001 [00:46<00:24, 28.18it/s]
65%| | 1302/2001 [00:46<00:24, 28.09it/s]
65%| | 1305/2001 [00:46<00:24, 27.94it/s]
65%| | 1308/2001 [00:46<00:24, 27.98it/s]
66%| | 1311/2001 [00:46<00:24, 28.03it/s]
66%| | 1314/2001 [00:46<00:24, 28.00it/s]
66%| | 1317/2001 [00:46<00:24, 27.97it/s]
66%| | 1320/2001 [00:47<00:24, 27.71it/s]
66%| | 1323/2001 [00:47<00:24, 27.74it/s]
66%| | 1326/2001 [00:47<00:24, 27.93it/s]
66%| | 1329/2001 [00:47<00:23, 28.00it/s]
67%| | 1332/2001 [00:47<00:23, 28.04it/s]
67%| | 1335/2001 [00:47<00:23, 27.98it/s]
67%| | 1338/2001 [00:47<00:23, 28.06it/s]
67%| | 1341/2001 [00:47<00:23, 28.12it/s]
67%| | 1344/2001 [00:47<00:23, 28.20it/s]
67%| | 1347/2001 [00:48<00:23, 28.18it/s]
67%| | 1350/2001 [00:48<00:23, 28.14it/s]
68%| | 1353/2001 [00:48<00:23, 28.10it/s]
68%| | 1356/2001 [00:48<00:22, 28.09it/s]
68%| | 1359/2001 [00:48<00:22, 28.02it/s]
68%| | 1362/2001 [00:48<00:22, 28.02it/s]
68%| | 1365/2001 [00:48<00:22, 28.03it/s]
68%| | 1368/2001 [00:48<00:22, 28.11it/s]
69%| | 1371/2001 [00:48<00:22, 28.11it/s]
69%| | 1374/2001 [00:48<00:22, 28.05it/s]
69%| | 1377/2001 [00:49<00:22, 28.02it/s]
69%| | 1380/2001 [00:49<00:22, 28.00it/s]
69%| | 1383/2001 [00:49<00:22, 28.05it/s]
69%| | 1386/2001 [00:49<00:21, 28.14it/s]
69%| | 1389/2001 [00:49<00:21, 28.23it/s]
70%| | 1392/2001 [00:49<00:21, 28.30it/s]
70%| | 1395/2001 [00:49<00:21, 28.17it/s]

(continues on next page)

58 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

70%| | 1398/2001 [00:49<00:21, 28.16it/s]
70%| | 1401/2001 [00:49<00:21, 28.06it/s]
70%| | 1404/2001 [00:50<00:21, 28.09it/s]
70%| | 1407/2001 [00:50<00:21, 28.04it/s]
70%| | 1410/2001 [00:50<00:21, 28.14it/s]
71%| | 1413/2001 [00:50<00:20, 28.24it/s]
71%| | 1416/2001 [00:50<00:20, 28.29it/s]
71%| | 1419/2001 [00:50<00:20, 28.21it/s]
71%| | 1422/2001 [00:50<00:20, 28.10it/s]
71%| | 1425/2001 [00:50<00:20, 28.11it/s]
71%| | 1428/2001 [00:50<00:20, 28.00it/s]
72%| | 1431/2001 [00:51<00:20, 28.04it/s]
72%| | 1434/2001 [00:51<00:20, 28.02it/s]
72%| | 1437/2001 [00:51<00:20, 28.08it/s]
72%| | 1440/2001 [00:51<00:19, 28.19it/s]
72%| | 1443/2001 [00:51<00:19, 28.19it/s]
72%| | 1446/2001 [00:51<00:19, 28.09it/s]
72%| | 1449/2001 [00:51<00:19, 28.06it/s]
73%| | 1452/2001 [00:51<00:19, 28.04it/s]
73%| | 1455/2001 [00:51<00:19, 27.95it/s]
73%| | 1458/2001 [00:51<00:19, 28.07it/s]
73%| | 1461/2001 [00:52<00:19, 28.17it/s]
73%| | 1464/2001 [00:52<00:19, 28.12it/s]
73%| | 1467/2001 [00:52<00:18, 28.11it/s]
73%| | 1470/2001 [00:52<00:18, 28.08it/s]
74%| | 1473/2001 [00:52<00:18, 28.02it/s]
74%| | 1476/2001 [00:52<00:18, 28.01it/s]
74%| | 1479/2001 [00:52<00:18, 28.00it/s]
74%| | 1482/2001 [00:52<00:18, 27.93it/s]
74%| | 1485/2001 [00:52<00:18, 27.93it/s]
74%| | 1488/2001 [00:53<00:18, 27.90it/s]
75%| | 1491/2001 [00:53<00:18, 27.99it/s]
75%| | 1494/2001 [00:53<00:18, 28.08it/s]
75%| | 1497/2001 [00:53<00:17, 28.09it/s]
75%| | 1500/2001 [00:53<00:17, 28.18it/s]
75%| | 1503/2001 [00:53<00:17, 28.07it/s]
75%| | 1506/2001 [00:53<00:17, 28.15it/s]
75%| | 1509/2001 [00:53<00:17, 28.22it/s]
76%| | 1512/2001 [00:53<00:17, 28.27it/s]
76%| | 1515/2001 [00:54<00:17, 28.26it/s]
76%| | 1518/2001 [00:54<00:17, 28.28it/s]
76%| | 1521/2001 [00:54<00:16, 28.34it/s]
76%| | 1524/2001 [00:54<00:16, 28.33it/s]
76%| | 1527/2001 [00:54<00:16, 28.27it/s]
76%| | 1530/2001 [00:54<00:16, 28.21it/s]
77%| | 1533/2001 [00:54<00:16, 28.23it/s]
77%| | 1536/2001 [00:54<00:16, 28.18it/s]
77%| | 1539/2001 [00:54<00:16, 28.19it/s]
77%| | 1542/2001 [00:54<00:16, 28.13it/s]
77%| | 1545/2001 [00:55<00:16, 28.13it/s]
77%| | 1548/2001 [00:55<00:16, 28.15it/s]
78%| | 1551/2001 [00:55<00:15, 28.21it/s]

(continues on next page)

5.2. How-to guides 59

MAICoS Documentation

(continued from previous page)

78%| | 1554/2001 [00:55<00:15, 28.31it/s]
78%| | 1557/2001 [00:55<00:15, 28.35it/s]
78%| | 1560/2001 [00:55<00:15, 28.31it/s]
78%| | 1563/2001 [00:55<00:15, 28.43it/s]
78%| | 1566/2001 [00:55<00:15, 28.39it/s]
78%| | 1569/2001 [00:55<00:15, 28.38it/s]
79%| | 1572/2001 [00:56<00:15, 28.29it/s]
79%| | 1575/2001 [00:56<00:15, 28.17it/s]
79%| | 1578/2001 [00:56<00:14, 28.20it/s]
79%| | 1581/2001 [00:56<00:14, 28.24it/s]
79%| | 1584/2001 [00:56<00:14, 28.29it/s]
79%| | 1587/2001 [00:56<00:14, 28.03it/s]
79%| | 1590/2001 [00:56<00:14, 28.14it/s]
80%| | 1593/2001 [00:56<00:14, 27.95it/s]
80%| | 1596/2001 [00:56<00:14, 27.97it/s]
80%| | 1599/2001 [00:56<00:14, 27.95it/s]
80%| | 1602/2001 [00:57<00:14, 27.85it/s]
80%| | 1605/2001 [00:57<00:14, 27.88it/s]
80%| | 1608/2001 [00:57<00:14, 28.05it/s]
81%| | 1611/2001 [00:57<00:13, 28.09it/s]
81%| | 1614/2001 [00:57<00:13, 28.10it/s]
81%| | 1617/2001 [00:57<00:13, 28.09it/s]
81%| | 1620/2001 [00:57<00:13, 28.13it/s]
81%| | 1623/2001 [00:57<00:13, 28.05it/s]
81%| | 1626/2001 [00:57<00:13, 28.05it/s]
81%| | 1629/2001 [00:58<00:13, 27.96it/s]
82%| | 1632/2001 [00:58<00:13, 28.01it/s]
82%| | 1635/2001 [00:58<00:13, 28.05it/s]
82%| | 1638/2001 [00:58<00:12, 28.01it/s]
82%| | 1641/2001 [00:58<00:12, 27.99it/s]
82%| | 1644/2001 [00:58<00:12, 28.01it/s]
82%| | 1647/2001 [00:58<00:12, 28.07it/s]
82%| | 1650/2001 [00:58<00:12, 28.06it/s]
83%| | 1653/2001 [00:58<00:12, 28.04it/s]
83%| | 1656/2001 [00:59<00:12, 28.03it/s]
83%| | 1659/2001 [00:59<00:12, 28.06it/s]
83%| | 1662/2001 [00:59<00:12, 28.16it/s]
83%| | 1665/2001 [00:59<00:11, 28.25it/s]
83%| | 1668/2001 [00:59<00:11, 28.29it/s]
84%| | 1671/2001 [00:59<00:11, 28.21it/s]
84%| | 1674/2001 [00:59<00:11, 28.17it/s]
84%| | 1677/2001 [00:59<00:11, 28.16it/s]
84%| | 1680/2001 [00:59<00:11, 28.08it/s]
84%| | 1683/2001 [00:59<00:11, 28.09it/s]
84%| | 1686/2001 [01:00<00:11, 28.18it/s]
84%| | 1689/2001 [01:00<00:11, 28.17it/s]
85%| | 1692/2001 [01:00<00:10, 28.17it/s]
85%| | 1695/2001 [01:00<00:10, 28.25it/s]
85%| | 1698/2001 [01:00<00:10, 28.20it/s]
85%| | 1701/2001 [01:00<00:10, 28.18it/s]
85%| | 1704/2001 [01:00<00:10, 28.04it/s]
85%| | 1707/2001 [01:00<00:10, 27.99it/s]

(continues on next page)

60 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

85%| | 1710/2001 [01:00<00:10, 27.98it/s]
86%| | 1713/2001 [01:01<00:10, 27.84it/s]
86%| | 1716/2001 [01:01<00:10, 27.76it/s]
86%| | 1719/2001 [01:01<00:10, 27.92it/s]
86%| | 1722/2001 [01:01<00:09, 28.07it/s]
86%| | 1725/2001 [01:01<00:09, 28.12it/s]
86%| | 1728/2001 [01:01<00:09, 28.06it/s]
87%| | 1731/2001 [01:01<00:09, 28.01it/s]
87%| | 1734/2001 [01:01<00:09, 27.98it/s]
87%| | 1737/2001 [01:01<00:09, 28.02it/s]
87%| | 1740/2001 [01:02<00:09, 28.12it/s]
87%| | 1743/2001 [01:02<00:09, 28.12it/s]
87%| | 1746/2001 [01:02<00:09, 28.24it/s]
87%| | 1749/2001 [01:02<00:08, 28.23it/s]
88%| | 1752/2001 [01:02<00:08, 28.25it/s]
88%| | 1755/2001 [01:02<00:08, 28.26it/s]
88%| | 1758/2001 [01:02<00:08, 28.28it/s]
88%| | 1761/2001 [01:02<00:08, 28.16it/s]
88%| | 1764/2001 [01:02<00:08, 28.12it/s]
88%| | 1767/2001 [01:02<00:08, 28.10it/s]
88%| | 1770/2001 [01:03<00:08, 28.08it/s]
89%| | 1773/2001 [01:03<00:08, 27.92it/s]
89%| | 1776/2001 [01:03<00:08, 28.00it/s]
89%| | 1779/2001 [01:03<00:07, 28.11it/s]
89%| | 1782/2001 [01:03<00:07, 28.15it/s]
89%| | 1785/2001 [01:03<00:07, 28.20it/s]
89%| | 1788/2001 [01:03<00:07, 28.20it/s]
90%| | 1791/2001 [01:03<00:07, 28.30it/s]
90%| | 1794/2001 [01:03<00:07, 28.26it/s]
90%| | 1797/2001 [01:04<00:07, 28.30it/s]
90%| | 1800/2001 [01:04<00:07, 28.22it/s]
90%| | 1803/2001 [01:04<00:07, 28.28it/s]
90%| | 1806/2001 [01:04<00:06, 28.38it/s]
90%| | 1809/2001 [01:04<00:06, 28.31it/s]
91%| | 1812/2001 [01:04<00:06, 28.25it/s]
91%| | 1815/2001 [01:04<00:06, 28.22it/s]
91%| | 1818/2001 [01:04<00:06, 28.20it/s]
91%| | 1821/2001 [01:04<00:06, 28.16it/s]
91%| | 1824/2001 [01:04<00:06, 28.21it/s]
91%|| 1827/2001 [01:05<00:06, 28.14it/s]
91%|| 1830/2001 [01:05<00:06, 28.11it/s]
92%|| 1833/2001 [01:05<00:05, 28.19it/s]
92%|| 1836/2001 [01:05<00:05, 28.29it/s]
92%|| 1839/2001 [01:05<00:05, 28.46it/s]
92%|| 1842/2001 [01:05<00:05, 28.47it/s]
92%|| 1845/2001 [01:05<00:05, 28.38it/s]
92%|| 1848/2001 [01:05<00:05, 28.43it/s]
93%|| 1851/2001 [01:05<00:05, 28.29it/s]
93%|| 1854/2001 [01:06<00:05, 28.32it/s]
93%|| 1857/2001 [01:06<00:05, 28.22it/s]
93%|| 1860/2001 [01:06<00:04, 28.29it/s]
93%|| 1863/2001 [01:06<00:04, 28.26it/s]

(continues on next page)

5.2. How-to guides 61

MAICoS Documentation

(continued from previous page)

93%|| 1866/2001 [01:06<00:04, 28.22it/s]
93%|| 1869/2001 [01:06<00:04, 28.20it/s]
94%|| 1872/2001 [01:06<00:04, 28.26it/s]
94%|| 1875/2001 [01:06<00:04, 28.15it/s]
94%|| 1878/2001 [01:06<00:04, 28.12it/s]
94%|| 1881/2001 [01:07<00:04, 28.12it/s]
94%|| 1884/2001 [01:07<00:04, 28.08it/s]
94%|| 1887/2001 [01:07<00:04, 28.06it/s]
94%|| 1890/2001 [01:07<00:03, 28.07it/s]
95%|| 1893/2001 [01:07<00:03, 28.20it/s]
95%|| 1896/2001 [01:07<00:03, 28.15it/s]
95%|| 1899/2001 [01:07<00:03, 28.11it/s]
95%|| 1902/2001 [01:07<00:03, 28.15it/s]
95%|| 1905/2001 [01:07<00:03, 28.17it/s]
95%|| 1908/2001 [01:07<00:03, 28.23it/s]
96%|| 1911/2001 [01:08<00:03, 28.26it/s]
96%|| 1914/2001 [01:08<00:03, 28.21it/s]
96%|| 1917/2001 [01:08<00:02, 28.24it/s]
96%|| 1920/2001 [01:08<00:02, 28.34it/s]
96%|| 1923/2001 [01:08<00:02, 28.32it/s]
96%|| 1926/2001 [01:08<00:02, 28.25it/s]
96%|| 1929/2001 [01:08<00:02, 28.24it/s]
97%|| 1932/2001 [01:08<00:02, 28.23it/s]
97%|| 1935/2001 [01:08<00:02, 28.07it/s]
97%|| 1938/2001 [01:09<00:02, 28.00it/s]
97%|| 1941/2001 [01:09<00:02, 27.87it/s]
97%|| 1944/2001 [01:09<00:02, 27.95it/s]
97%|| 1947/2001 [01:09<00:01, 28.01it/s]
97%|| 1950/2001 [01:09<00:01, 27.90it/s]
98%|| 1953/2001 [01:09<00:01, 27.97it/s]
98%|| 1956/2001 [01:09<00:01, 28.07it/s]
98%|| 1959/2001 [01:09<00:01, 28.06it/s]
98%|| 1962/2001 [01:09<00:01, 28.17it/s]
98%|| 1965/2001 [01:09<00:01, 28.12it/s]
98%|| 1968/2001 [01:10<00:01, 28.18it/s]
99%|| 1971/2001 [01:10<00:01, 28.17it/s]
99%|| 1974/2001 [01:10<00:00, 28.09it/s]
99%|| 1977/2001 [01:10<00:00, 28.13it/s]
99%|| 1980/2001 [01:10<00:00, 28.02it/s]
99%|| 1983/2001 [01:10<00:00, 28.13it/s]
99%|| 1986/2001 [01:10<00:00, 28.18it/s]
99%|| 1989/2001 [01:10<00:00, 28.07it/s]
100%|| 1992/2001 [01:10<00:00, 28.03it/s]
100%|| 1995/2001 [01:11<00:00, 28.04it/s]
100%|| 1998/2001 [01:11<00:00, 27.91it/s]
100%|| 2001/2001 [01:11<00:00, 28.04it/s]
100%|| 2001/2001 [01:11<00:00, 28.08it/s]

<maicos.modules.pdfplanar.PDFPlanar object at 0x7fad7be05ca0>

We also calculate the density profile of the water molecules in order to compare the different slabs with the layering
visible in the density.

62 Chapter 5. Developer documentation

MAICoS Documentation

dana_obj = maicos.DensityPlanar(
water, dim=2, refgroup=water, bin_width=0.1, sym=True, zmin=-7, zmax=7

)

dana_obj.run(step=10)

Unwrapping in combination with the `wrap_compound='atoms` is superfluous. `unwrap` will␣
→˓be set to `False`.

<maicos.modules.densityplanar.DensityPlanar object at 0x7fad7be354c0>

The results of the analysis are stored in the results member variable. As per the documentation of PDFPlanar, we
get three different arrays: bin_pos, bins, and pdf. Here, bin_pos is the position of the center of the slices in the
z-direction, bins contains the bin positions of the pair distribution, which are shared by all slices and correspondingly
pdf contains each profile that our code produced.

In the following, we loop over all the pdf slices and plot each of them. Furthermore, in a separate subplot, we also show
the density profile of the water molecules and highlight the slices that each pdf is calculated for. Hence, the same color
in both plots corresponds to the same slice for the pair distribution function and the density profile. %%

u per cubic angstrom to kg per cubic meter factor
u2kg = 1660.5390665999998

fig, ax = plt.subplots(1, 2)
print(ax)

tax = ax[1].twinx()
shift = 0
shift_amount = 2
for i in range(0, len(ana_obj.results.pdf[0])):

bin_pos = ana_obj.results.bin_pos[i]

pdf_prof = ana_obj.results.pdf[:, i]
mean_bulk = np.mean(pdf_prof[ana_obj.results.bins > 10])

line = ax[0].plot(
ana_obj.results.bins, ana_obj.results.pdf[:, i] / mean_bulk + shift

)
tax.vlines(

7 + bin_pos, 0, 3500, alpha=0.7, color=line[0].get_color(), linestyles="dashed"
)

tax.axvspan(
7 + bin_pos - 0.25 * 2,
7 + bin_pos + 0.25 * 2,
color=line[0].get_color(),
alpha=0.3,

)
shift += shift_amount

ax[0].set_ylabel(r"$g(r)$")
ax[0].set_xlabel(r"r [\AA]")
ax[0].set_xlim((0, 15))

(continues on next page)

5.2. How-to guides 63

MAICoS Documentation

(continued from previous page)

ax[0].hlines(1, 0, 15, color="black", linestyles="dashed", alpha=0.5)

tax.plot(
7 + dana_obj.results.bin_pos,
dana_obj.results.profile * u2kg,
color="black",
label="Density",

)
tax.set_xlim((1, 7))

ax[1].set_yticks(tax.get_yticks())

ax[1].set_yticklabels([])

tax.set_ylabel(r"$\rho(z)$ [kg/m3]")
ax[1].set_xlabel(r"z [\AA]")

Set the padding between the axis to zero
plt.tight_layout()

fig.subplots_adjust(wspace=0, hspace=0)
fig.dpi = 200

64 Chapter 5. Developer documentation

MAICoS Documentation

[<Axes: > <Axes: >]

Total running time of the script: (1 minutes 12.400 seconds)

5.2.5 Calculating and interpreting dipolar pair correlation functions

In this examples we will calculate dipolar pair correlation functions in real and Fourier space using the maicos modules
maicos.RDFDiporder and maicos.DiporderStructureFactor. We will show how these pair correlation func-
tions are connected to each other and electrostatic properties like the dielectric constant 𝜀 and the Kirkwood factor
𝑔𝐾 .

We start by importing the necessarary modules

import matplotlib.pyplot as plt
import MDAnalysis as mda
import numpy as np
import scipy
from MDAnalysis.analysis.dielectric import DielectricConstant

import maicos
from maicos.lib.math import compute_rdf_structure_factor

Our example system is 𝑁 = 512 rigid SPC/E water molecules simulated in an NVT ensemble at 300K in a cubic cell
of 𝐿 = 24.635 . To follow this how-to guide, you should download the topology and the trajectory files of the
system. Below we load the system, report and store some system properties for later usage.

u = mda.Universe("water_nvt.tpr", "water_nvt.xtc")

volume = u.trajectory.ts.volume
density = u.residues.n_residues / volume
dipole_moment = u.atoms.dipole_moment(compound="residues", unwrap=True).mean()

print(f"_n = {density:.3f} Å^-3")
print(f"µ = {dipole_moment:.2f} eÅ")

_n = 0.034 Å^-3
µ = 0.49 eÅ

The results of our first property calculations show that the number density as well as the dipole moment of a single
water molecule is consistent with the literature1.

1 Carlos Vega and Jose L. F. Abascal. Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys.,
13(44):19663–19688, November 2011. doi:10.1039/C1CP22168J.

5.2. How-to guides 65

https://doi.org/10.1039/C1CP22168J

MAICoS Documentation

Static dielectric constant

To start with the analysis we first look at the dielectric constant of the system. If you run a simulation using an Ewald
simulation technique as usually done, the dielectric constant for such system with metallic boundary conditions is given
according to Neumann2 by

𝜀 = 1 +
⟨𝑀2⟩MBE − ⟨𝑀⟩2MBE

3𝜀0𝑉 𝑘𝐵𝑇

where

𝑀 =

𝑁∑︁
𝑖=1

𝜇𝑖

is the total dipole moment of the box, 𝑉 its volume and 𝜀0 the vacuum permittivity. We use the subscript in the
expectation value MBE indicating that the equation only holds for simulations with Metallic Boundary conditions in
an Ewald simulation style. As shown in the equation for 𝜀(MBE) the dielectric constant here is a total cell quantity
connecting the fluctuations of the total dipole moment to the dielectric constant. We can calculate 𝜀MBE using the
MDAnalysis.analysis.dielectric.DielectricConstant module of MDAnalysis.

epsilon_mbe = DielectricConstant(atomgroup=u.atoms).run()
print(f"_MBE = {epsilon_mbe.results.eps_mean:.2f}")

_MBE = 69.21

The value of 70 is the same as reported in the literature for the rigid SPC/E water modelPage 65, 1.

Kirkwood factor

Knowing the dielectric constant we can also calculate the Kirkwood factor 𝑔𝐾 which is a measure describing molecular
correlations. I.e a Kirkwood factor greater than 1 indicates that neighboring molecular dipoles are more likely to align
in the same direction, enhancing the material’s polarization and, consequently, its dielectric constant. Based on the
dielectric constant 𝜀 Kirkwood and Fröhlich derived the relation for the factor 𝑔𝐾 according to

𝑁𝜇2𝑔𝐾
𝜀0𝑉 𝑘𝐵𝑇

=
(𝜀− 1)(2𝜀+ 1)

𝜀

This relation is valid for a sample in an infinity, homogenous medium of the same dielectric constant. Below we
implement this equation and calculate the factor for our system.

def kirkwood_factor_KF(
dielectric_constant: float,
volume: float,
n_dipoles: float,
molecular_dipole_moment: float,
temperature: float = 300,

) -> float:
"""Kirkwood factor in the Kirkwood-Fröhlich way.

For the sample in an infinity, homogenous medium of the same dielectric constant.

Parameters
(continues on next page)

2 Martin Neumann. Dipole moment fluctuation formulas in computer simulations of polar systems. Molecular Physics, 50(4):841–858, Novem-
ber 1983. doi:10.1080/00268978300102721.

66 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/analysis/dielectric.html#MDAnalysis.analysis.dielectric.DielectricConstant
https://doi.org/10.1080/00268978300102721

MAICoS Documentation

(continued from previous page)

dielectric_constant : float

the static dielectric constant
volume : float

system volume in Å^3
n_dipoles : float

number of dipoles
molecular_dipole_moment : float

dipole moment of a molecule (eÅ)
temperature : float

temperature of the simulation K
"""
dipole_moment_sq = (

molecular_dipole_moment
* scipy.constants.elementary_charge
* scipy.constants.angstrom

) ** 2
factor = (

scipy.constants.epsilon_0
* (volume * scipy.constants.angstrom**3)
* scipy.constants.Boltzmann
* temperature

)

return (
factor
/ (dielectric_constant * n_dipoles * dipole_moment_sq)
* (dielectric_constant - 1)
* (2 * dielectric_constant + 1)

)

kirkwood_KF = kirkwood_factor_KF(
dielectric_constant=epsilon_mbe.results.eps_mean,
volume=volume,
n_dipoles=u.residues.n_residues,
molecular_dipole_moment=dipole_moment,

)

print(f"g_K = {kirkwood_KF:.2f}")

g_K = 2.39

This value means there is a quite strong correlation between neighboring water molecules. The dielectric constant 𝜀 is a
material property and does not depend on the boundary condition. Instead, the Kirkwood factor is indicative of dipole-
dipole correlations which instead depend on the boundary condistions in the simulation. This relation is described and
shown below.

5.2. How-to guides 67

MAICoS Documentation

Connecting the Kirkwood factor to real space dipolar pair-correlation functions

The 𝑟-dependent Kirkwood factor can also be calculated from real space dipole-dipole pair correlation function3

𝑔�̂�,�̂�(𝑟) =
1

𝑁

⟨∑︁
𝑖

1

𝑛𝑖(𝑟)

𝑛𝑖(𝑟)∑︁
𝑗=1

(�̂�𝑖 · �̂�𝑗)

⟩

where �̂� is the normalized dipole moment and 𝑛𝑖(𝑟) is the number of dipoles within a spherical shell of distance 𝑟 and
𝑟+ 𝛿𝑟 from dipole 𝑖. We compute the pair correlation function using the maicos.RDFDiporder module up to half of
the length of cubic simulation box. We drop a delta like contribution in 𝑟 = 0 caused by interaction of the dipole with
itself.

L_half = u.dimensions[:3].max() / 2

rdf_diporder = maicos.RDFDiporder(g1=u.atoms, rmax=L_half, bin_width=0.01)
rdf_diporder.run()

<maicos.modules.rdfdiporder.RDFDiporder object at 0x7fad78d82fa0>

Based on this correlation function we can calculate the radially resolved Kirkwood factor via4

𝐺𝐾(𝑟) = 𝜌𝑛4𝜋

∫︁ 𝑟

0

d𝑟′𝑟′
2
𝑔�̂�,�̂�(𝑟

′) + 1

where the “+1” accounts for the integration of the delta function at 𝑟 = 0. Here 𝜌𝑛 = 𝑁/𝑉 is the density of dipoles.

radial_kirkwood = 1 + (
density
* 4
* np.pi
* scipy.integrate.cumulative_trapezoid(

x=rdf_diporder.results.bins,
y=rdf_diporder.results.bins**2 * rdf_diporder.results.rdf,
initial=0,

)
)

While, for a truly infinite system, the 𝑟- dependent Kirkwood factor, 𝐺K(𝑟) is short range5Page 68, 4, the boundary
conditions on a finite system introduce long-range effects. In particular, within MBE, Caillol6 has shown that𝐺K(𝑟) has
a spurious asymptotic growth proportional to 𝑟3/𝑉 . This effect is stil present at 𝑟 = 𝑟𝐾 , where 𝑟𝐾 (here approximately
6 Å) indicates a distance after which all the physical features of 𝑔�̂�,�̂�(𝑟) are extinct. For more details see the original
literature. Below we show the pair correlation function as well as the radial and the (static) Kirkwood factor as gray
dashed line.

fig, ax = plt.subplots(2)

(continues on next page)

3 Cui Zhang and Giulia Galli. Dipolar correlations in liquid water. The Journal of Chemical Physics, 141(8):084504, August 2014.
doi:10.1063/1.4893638.

4 Chao Zhang, Jürg Hutter, and Michiel Sprik. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Elec-
tric Displacement Simulations: Application to the Dielectric Constant of Liquid Water. J. Phys. Chem. Lett., 7(14):2696–2701, July 2016.
doi:10.1021/acs.jpclett.6b01127.

5 H. Fröhlich. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Monographs on the Physics and Chemistry of Materials. Oxford
University Press, 2 edition, 1958.

6 J. M. Caillol. Asymptotic behavior of the pair-correlation function of a polar liquid. The Journal of Chemical Physics, 96(9):7039–7053, May
1992. doi:10.1063/1.462536.

68 Chapter 5. Developer documentation

https://doi.org/10.1063/1.4893638
https://doi.org/10.1021/acs.jpclett.6b01127
https://doi.org/10.1063/1.462536

MAICoS Documentation

(continued from previous page)

ax[0].plot(
rdf_diporder.results.bins,
rdf_diporder.results.rdf,

)
ax[1].axhline(kirkwood_KF, ls="--", c="gray", label="g_K (KF)")

ax[1].plot(rdf_diporder.results.bins, radial_kirkwood)

ax[0].set(
xlim=(2, 6),
ylim=(-0.2, 1.5),
ylabel=r"$g_\mathrm{\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\mu}}}(r)$",

)

ax[1].set(
xlim=(2, 10),
ylim=(0.95, 3.9),
xlabel=r"$r\,/\,\mathrm{Å}$",
ylabel=r"$G_K(r)$",

)

ax[1].legend()

fig.align_labels()
fig.tight_layout()

5.2. How-to guides 69

MAICoS Documentation

Notice that the Kirkwood Fröhlich estimator for the Kirkwood factors differs from the value of 𝐺𝐾(𝑟 = 𝑟𝐾) obtained
from simulations in the MBE ensemble.

Dipole Structure factor

An alternative approach to calculate the dielectric constant is via the dipole structure factor which is given by

𝑆(𝑞)�̂��̂� =

⟨
1

𝑁

𝑁∑︁
𝑖,𝑗=1

�̂�𝑖�̂�𝑗 exp(−𝑖𝑞 · [𝑟𝑖 − 𝑟𝑗])

⟩
We compute the structure factor using the maicos.DiporderStructureFactor module.

diporder_structure_factors = maicos.DiporderStructureFactor(atomgroup=u.atoms, dq=0.05)
diporder_structure_factors.run()

<maicos.modules.diporderstructurefactor.DiporderStructureFactor object at 0x7fad78f6e2b0>

As also shown how to on SAXS calculations the structure factor can also be obtained directly from the real space
correlation functions using Fourier transformation via

𝑆FT
�̂��̂�(𝑞) = 1 + 4𝜋𝜌

∫︁ ∞

0

d𝑟𝑟
sin(𝑞𝑟)

𝑞
𝑔�̂��̂�(𝑟) ,

which can be obtained by the function maicos.lib.math.compute_rdf_structure_factor(). We have assumed
an isotropic system so that 𝑆(𝑞) = 𝑆(𝑞). Note that we added a one to the dipole pair correlation function due to the
implementation of the Fourier transformation inside maicos.lib.math.compute_rdf_structure_factor().

70 Chapter 5. Developer documentation

MAICoS Documentation

q_rdf, struct_fac_rdf = compute_rdf_structure_factor(
rdf=1 + rdf_diporder.results.rdf, r=rdf_diporder.results.bins, density=density

)

Before we plot the structure factors we first also fit the low 𝑞 limit according to a quadratic function as

𝑆�̂��̂�(𝑞 → 0) ≈ 𝑆0 + 𝑆2𝑞
2

The fit contains no linear term because of the structure factors’ symmetry around 0.

n_max = 5 # take `n_max` first data points of the structure factor for the fit

q_max is the maximal q value corresponding to the last point taken for the fit
q_max = diporder_structure_factors.results.scattering_vectors[n_max]
print(f"q_max = {q_max:.2f} Å")

eps_fit = np.polynomial.Polynomial.fit(
x=diporder_structure_factors.results.scattering_vectors[:n_max],
y=diporder_structure_factors.results.structure_factors[:n_max],
deg=(0, 2),
domain=(-q_max, q_max),

)

print(
f"Best fit parameters: S_0 = {eps_fit.coef[0]:.2f}, S_2 = {eps_fit.coef[2]:.2f} Å^2"

)

q_max = 0.63 Å
Best fit parameters: S_0 = 2.45, S_2 = -0.84 Å^2

Now we can finally plot the structure factor

plt.plot(
diporder_structure_factors.results.scattering_vectors,
diporder_structure_factors.results.structure_factors,
label=r"$S_{\hat \mu\hat \mu}$",

)
plt.plot(

q_rdf, struct_fac_rdf, ls="dashed", label=r"$S_{\hat \mu\hat \mu}^\mathrm{FT}$"
)
plt.plot(*eps_fit.linspace(50), ls="dotted", label=r"$S_0 + S_2 q^2$")

plt.axhline(1, ls=":", c="gray")
plt.ylabel(r"$S_\mathrm{\hat\mu \hat\mu}(q)$")
plt.xlabel(r"q / $Å^{-1}$")
plt.tight_layout()
plt.xlim(0, 5)
plt.legend()
plt.show()

5.2. How-to guides 71

MAICoS Documentation

You see that the orange and the blue curve agree. We also add the fit as a green dotted line. From 𝑆0 we can extract
the dielectric constant via7

𝜇2

𝜀0
𝑆0 =

(𝜀− 1)(2𝜀+ 1)

𝜀

This formula can be inverted and an estimator for 𝜀𝑆 can be obtained as we show below.

def dielectric_constant_struc_fact(S_0: float, molecular_dipole_moment: float) -> float:
"""The dielectric constant calculated from the q->0 limit of the structure factor.

Parameters

q_0_limit : float

the q -> 0 limit if the dipololar structure factor
molecular_dipole_moment : float

dipole moment of a molecule (eÅ)
"""
dipole_moment_sq = (

molecular_dipole_moment
* scipy.constants.angstrom
* scipy.constants.elementary_charge

) ** 2
(continues on next page)

7 Jean-Pierre Hansen and Ian. R. McDonald. Theory of Simple Liquids. Elsevier / Academic Press, 3rd ed edition, 2006. ISBN 9780080455075.

72 Chapter 5. Developer documentation

MAICoS Documentation

(continued from previous page)

S_limit = (
dipole_moment_sq
* S_0
/ scipy.constants.epsilon_0
/ scipy.constants.elementary_charge
/ scipy.constants.angstrom**3

)

return (np.sqrt((S_limit) ** 2 + 2 * S_limit + 9) + S_limit + 1) / 4

epsilon_struct_fac = dielectric_constant_struc_fact(
S_0=eps_fit.coef[0], molecular_dipole_moment=dipole_moment

)
print(f"_S = {epsilon_struct_fac:.2f}")

_S = 53.53

Which is quite close the value calculated directly from the total dipole fluctuations of the simulations 𝜀MBE ≈ 69. This
difference may result in the very crude fit that is performed and it could be drastically improved by a Bayesian fitting
method as for example for fitting the Seebeck coefficient from a similar structure factor8.

References

Total running time of the script: (2 minutes 2.492 seconds)

5.3 Reference guides

The reference guides contain details for all the analysis modules. The API documentation gives details on how the
calculators and additional functions can be used from each language.

5.3.1 Analysis Modules

This is a list of all analysis modules provided by MAICoS. Note that we do not have an example section for each module.
Instead, we refer to our tutorial and How-to guides. Once you understand the basic structure taught there, you can work
with all modules. If not, feel free to raise an issue in Gitlab or ask us on Discord.

8 Enrico Drigo and Stefano Baroni. Seebeck Coefficient of Liquid Water from Equilibrium Molecular Dynamics. J. Chem. Theory Comput.,
19(23):8855–8860, December 2023. doi:10.1021/acs.jctc.3c00760.

5.3. Reference guides 73

https://gitlab.com/maicos-devel/maicos/-/issues
https://discord.gg/mnrEQWVAed
https://doi.org/10.1021/acs.jctc.3c00760

MAICoS Documentation

DensityCylinder

class maicos.DensityCylinder(atomgroup: AtomGroup, dens: str = 'mass', dim: int = 2, zmin: float | None =
None, zmax: float | None = None, bin_width: float = 1, rmin: float = 0, rmax:
float | None = None, refgroup: AtomGroup | None = None, grouping: str =
'atoms', unwrap: bool = True, bin_method: str = 'com', output: str =
'density.dat', concfreq: int = 0, jitter: float = 0.0)

Bases: ProfileCylinderBase

Cylindrical partial density profiles.

Calculations are carried out for mass (u · −3), number (−3) or charge (e · −3) density profiles along certain
cartesian axes [x, y, z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding centers (i.e., center of mass), tak-
ing into account periodic boundary conditions, are calculated. For these calculations molecules will be un-
wrapped/made whole. Trajectories containing already whole molecules can be run with unwrap=False to gain
a speedup. For grouping with respect to atoms, the unwrap option is always ignored.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

74 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• dens ({"mass", "number", "charge"}) – density type to be calculated.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

DensityPlanar

class maicos.DensityPlanar(atomgroup: AtomGroup, dens: str = 'mass', dim: int = 2, zmin: float | None =
None, zmax: float | None = None, bin_width: float = 1, refgroup: AtomGroup |
None = None, sym: bool = False, grouping: str = 'atoms', unwrap: bool = True,
bin_method: str = 'com', output: str = 'density.dat', concfreq: int = 0, jitter: float
= 0.0)

Bases: ProfilePlanarBase

Cartesian partial density profiles.

5.3. Reference guides 75

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

Calculations are carried out for mass (u · −3), number (−3) or charge (e · −3) density profiles along certain
cartesian axes [x, y, z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding centers (i.e., center of mass), tak-
ing into account periodic boundary conditions, are calculated. For these calculations molecules will be un-
wrapped/made whole. Trajectories containing already whole molecules can be run with unwrap=False to gain
a speedup. For grouping with respect to atoms, the unwrap option is always ignored.

For the correlation analysis the central bin (𝑁∖2) of the 0th’s group profile is used. For further information on
the correlation analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

76 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

MAICoS Documentation

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• dens ({"mass", "number", "charge"}) – density type to be calculated.

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

Notes

Partial mass density profiles can be used to calculate the ideal component of the chemical potential. For details,
take a look at the corresponding How-to guide.

DensitySphere

class maicos.DensitySphere(atomgroup: AtomGroup, dens: str = 'mass', bin_width: float = 1, rmin: float = 0,
rmax: float | None = None, refgroup: AtomGroup | None = None, grouping: str =
'atoms', unwrap: bool = True, bin_method: str = 'com', output: str =
'density.dat', concfreq: int = 0, jitter: float = 0.0)

Bases: ProfileSphereBase

Spherical partial density profiles.

Calculations are carried out for mass (u · −3), number (−3) or charge (e · −3) density profiles along certain
cartesian axes [x, y, z] of the simulation cell. Cell dimensions are allowed to fluctuate in time.

For grouping with respect to molecules, residues etc., the corresponding centers (i.e., center of mass), tak-
ing into account periodic boundary conditions, are calculated. For these calculations molecules will be un-
wrapped/made whole. Trajectories containing already whole molecules can be run with unwrap=False to gain
a speedup. For grouping with respect to atoms, the unwrap option is always ignored.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

5.3. Reference guides 77

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• bin_width (float) – Width of the bins (in Å).

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• dens ({"mass", "number", "charge"}) – density type to be calculated.

78 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

MAICoS Documentation

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

DielectricCylinder

class maicos.DielectricCylinder(atomgroup: AtomGroup, bin_width: float = 0.1, temperature: float = 300,
single: bool = False, output_prefix: str = 'eps_cyl', refgroup: AtomGroup |
None = None, concfreq: int = 0, jitter: float = 0.0, dim: int = 2, rmin: float
= 0, rmax: float | None = None, zmin: float | None = None, zmax: float |
None = None, vcutwidth: float = 0.1, unwrap: bool = True)

Bases: CylinderBase

Cylindrical dielectric profiles.

Components are calculated along the axial (𝑧) and radial (𝑟) direction either with respect to the center of the
simulation box or the center of mass of the refgroup, if provided. The axial direction is selected using the dim
parameter.

For correlation analysis, the component along the 𝑧 axis is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

For usage please refer to How-to: Dielectric constant and for details on the theory see Dielectric constant mea-
surement.

Also, please read and cite1.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

1 Philip Loche, Cihan Ayaz, Alexander Schlaich, Yuki Uematsu, and Roland R. Netz. Giant Axial Dielectric Response in Water-Filled Nanotubes
and Effective Electrostatic Ion–Ion Interactions from a Tensorial Dielectric Model. J. Phys. Chem. B, 123(50):10850–10857, December 2019.
doi:10.1021/acs.jpcb.9b09269.

5.3. Reference guides 79

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://doi.org/10.1021/acs.jpcb.9b09269

MAICoS Documentation

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• temperature (float) – Reference temperature (K)

• single (bool) – For a single chain of molecules the average of M is zero. This flag sets
<M> = 0.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.eps_z

Reduced axial dielectric profile (𝜀𝑧 − 1) of the selected atomgroup

Type
numpy.ndarray

results.deps_z

Estimated uncertainty of axial dielectric profile

Type
numpy.ndarray

80 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

results.eps_r

Reduced inverse radial dielectric profile (𝜀−1
𝑟 − 1)

Type
numpy.ndarray

results.deps_r

Estimated uncertainty of inverse radial dielectric profile

Type
numpy.ndarray

References

save()→ None
Save results of analysis to file specified by output.

DielectricPlanar

class maicos.DielectricPlanar(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax: float
| None = None, bin_width: float = 0.5, refgroup: AtomGroup | None = None,
is_3d: bool = False, sym: bool = False, unwrap: bool = True, temperature:
float = 300, output_prefix: str = 'eps', concfreq: int = 0, jitter: float = 0.0,
vcutwidth: float = 0.1)

Bases: PlanarBase

Planar dielectric profiles.

For usage please refer to How-to: Dielectric constant and for details on the theory see Dielectric constant mea-
surement.

For correlation analysis, the norm of the parallel total dipole moment is used. For further information on the
correlation analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Also, please read and cite Schlaich et al.1 and Refs.2,3.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

1 Alexander Schlaich, Ernst W. Knapp, and Roland R. Netz. Water Dielectric Effects in Planar Confinement. Phys. Rev. Lett., 117(4):048001,
July 2016. doi:10.1103/PhysRevLett.117.048001.

2 Philip Loche, Cihan Ayaz, Amanuel Wolde-Kidan, Alexander Schlaich, and Roland R. Netz. Universal and Nonuniversal Aspects of Electro-
statics in Aqueous Nanoconfinement. J. Phys. Chem. B, 124(21):4365–4371, May 2020. doi:10.1021/acs.jpcb.0c01967.

3 Douwe Jan Bonthuis, Stephan Gekle, and Roland R. Netz. Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for
Capacitance, Hydration Interaction and Ion Adsorption. Langmuir, 28(20):7679–7694, 2012. doi:10.1021/la2051564.

5.3. Reference guides 81

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://doi.org/10.1103/PhysRevLett.117.048001
https://doi.org/10.1021/acs.jpcb.0c01967
https://doi.org/10.1021/la2051564

MAICoS Documentation

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• is_3d (bool) – Use 3d-periodic boundary conditions, i.e., include the dipole correction for
the interaction between periodic images4.

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

• temperature (float) – Reference temperature (K)

• output_prefix (str) – Prefix for output files.

• vcutwidth (float) – Spacing of virtual cuts (bins) along the parallel directions.

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.eps_par

Reduced parallel dielectric profile (𝜀‖ − 1) of the selected AtomGroup

Type
numpy.ndarray

results.deps_par

Uncertainty of parallel dielectric profile

Type
numpy.ndarray

4 Harry A. Stern and Scott E. Feller. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer
simulation. The Journal of Chemical Physics, 118(7):3401–3412, February 2003. doi:10.1063/1.1537244.

82 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://doi.org/10.1063/1.1537244

MAICoS Documentation

results.eps_par_self

Reduced self contribution of parallel dielectric profile (𝜀‖,self − 1)

Type
numpy.ndarray

results.eps_par_coll

Reduced collective contribution of parallel dielectric profile (𝜀‖,coll − 1)

Type
numpy.ndarray

results.eps_perp

Reduced inverse perpendicular dielectric profile (𝜀−1
⊥ − 1)

Type
numpy.ndarray

results.deps_perp

Uncertainty of inverse perpendicular dielectric profile

Type
numpy.ndarray

results.eps_perp_self

Reduced self contribution of the inverse perpendicular dielectric profile (𝜀−1
⊥,self − 1)

Type
numpy.ndarray

results.eps_perp_coll

Reduced collective contribution of the inverse perpendicular dielectric profile (𝜀−1
⊥,coll − 1)

Type
numpy.ndarray

References

save()→ None
Save results of analysis to file specified by output.

DielectricSpectrum

class maicos.DielectricSpectrum(atomgroup: AtomGroup, refgroup: AtomGroup | None = None, unwrap:
bool = True, concfreq: int = 0, temperature: float = 300, output_prefix: str
= '', segs: int = 20, df: float | None = None, bins: int = 200, binafter: float
= 20, nobin: bool = False, jitter: float = 0.0)

Bases: AnalysisBase

Linear dielectric spectrum.

This module, given a molecular dynamics trajectory, produces a .txt file containing the complex dielectric
function as a function of the (linear, not radial - i.e., 𝜈 or 𝑓 , rather than 𝜔) frequency, along with the as-
sociated standard deviations. The algorithm is based on the Fluctuation Dissipation Relation: 𝜒(𝑓) =
−1/(3𝑉 𝑘𝐵𝑇𝜀0)ℒ[𝜃(𝑡)⟨𝑃 (0)𝑑𝑃 (𝑡)/𝑑𝑡⟩], where ℒ is the Laplace transformation.

5.3. Reference guides 83

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

Note: The polarization time series and the average system volume are also saved.

Please read and cite1.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• temperature (float) – Reference temperature (K)

• output_prefix (str) – Prefix for output files.

• segs (int) – Sets the number of segments the trajectory is broken into.

• df (float) – The desired frequency spacing in THz. This determines the minimum fre-
quency about which there is data. Overrides segs option.

• bins (int) – Determines the number of bins used for data averaging; (this parameter sets
the upper limit). The data are by default binned logarithmically. This helps to reduce noise,
particularly in the high-frequency domain, and also prevents plot files from being too large.

• binafter (int) – The number of low-frequency data points that are left unbinned.

• nobin (bool) – Prevents the data from being binned altogether. This can result in very large
plot files and errors.

results

1 Shane Carlson, Florian N. Brünig, Philip Loche, Douwe Jan Bonthuis, and Roland R. Netz. Exploring the Absorption Spectrum of Simulated
Water from MHz to Infrared. J. Phys. Chem. A, 124(27):5599–5605, July 2020. doi:10.1021/acs.jpca.0c04063.

84 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1021/acs.jpca.0c04063

MAICoS Documentation

References

save()→ None
Save results of analysis to file specified by output.

DielectricSphere

class maicos.DielectricSphere(atomgroup: AtomGroup, bin_width: float = 0.1, temperature: float = 300,
output_prefix: str = 'eps_sph', refgroup: AtomGroup | None = None,
concfreq: int = 0, jitter: float = 0.0, rmin: float = 0, rmax: float | None =
None, unwrap: bool = True)

Bases: SphereBase

Spherical dielectric profiles.

Components are calculated along the radial (𝑟) direction either with respect to the center of the simulation box
or the center of mass of the refgroup, if provided.

For usage, please refer to How-to: Dielectric constant and for details on the theory see Dielectric constant
measurement.

For correlation analysis, the radial (𝑟) component is used. For further information on the correlation analysis
please refer to maicos.core.base.AnalysisBase or the General design section.

Also, please read and cite1.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

1 Christian Schaaf and Stephan Gekle. Dielectric response of the water hydration layer around spherical solutes. Phys. Rev. E, 92(3):032718,
September 2015. doi:10.1103/PhysRevE.92.032718.

5.3. Reference guides 85

https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.1103/PhysRevE.92.032718

MAICoS Documentation

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• bin_width (float) – Width of the bins (in Å).

• temperature (float) – Reference temperature (K)

• output_prefix (str) – Prefix for output files.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.eps_rad

Reduced inverse radial dielectric profile (𝜀−1
𝑟 − 1)

Type
numpy.ndarray

results.deps_rad

Uncertainty of inverse radial dielectric profile

Type
numpy.ndarray

References

save()→ None
Save results of analysis to file specified by output.

DipoleAngle

class maicos.DipoleAngle(atomgroup: AtomGroup, unwrap: bool = False, refgroup: AtomGroup | None =
None, concfreq: int = 0, grouping: str = 'residues', pdim: int = 2, output: str =
'dipangle.dat', jitter: float = 0.0)

Bases: AnalysisBase

Angle timeseries of dipole moments with respect to an axis.

The analysis can be applied to study the orientational dynamics of water molecules during an excitation pulse.
For more details read Elgabarty et al.1.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

1 Hossam Elgabarty, Tobias Kampfrath, Douwe Jan Bonthuis, Vasileios Balos, Naveen Kumar Kaliannan, Philip Loche, Roland R. Netz, Martin
Wolf, Thomas D. Kühne, and Mohsen Sajadi. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation.
Science Advances, 6(17):eaay7074, April 2020. doi:10.1126/sciadv.aay7074.

86 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://doi.org/10.1126/sciadv.aay7074

MAICoS Documentation

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• pdim ({0, 1, 2}) – direction of the projection

• output (str) – Output filename.

results.t

time (ps).

Type
numpy.ndarray

resulst.cos_theta_i

Average cos between dipole and axis.

Type
numpy.ndarray

resulst.cos_theta_ii

Average cos of the dipoles and axis.

Type
numpy.ndarray

5.3. Reference guides 87

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

resulst.cos_theta_ij

Product cos of dipole i and cos of dipole j (i != j).

Type
numpy.ndarray

References

save()→ None
Save results of analysis to file specified by output.

DiporderCylinder

class maicos.DiporderCylinder(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax: float
| None = None, bin_width: float = 1, rmin: float = 0, rmax: float | None =
None, refgroup: AtomGroup | None = None, grouping: str = 'residues',
unwrap: bool = True, bin_method: str = 'com', output: str =
'diporder_cylinder.dat', concfreq: int = 0, pdim: str = 'r', order_parameter:
str = 'P0', jitter: float = 0.0)

Bases: ProfileCylinderBase

Cylindrical dipolar order parameters.

Calculations include the projected dipole density 𝑃0(𝑧) cos([𝑧]), the dipole orientation cos([𝑧]), the squared
dipole orientation cos ([𝑧]) and the number density (𝑧).

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

88 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• pdim ({"r", "z"}) – direction of the projection

• order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –

Order parameter to be calculated:

– "P0": total dipole moment projected on an axis

– "cos_theta": cosine of the dipole moment with an axis

– "cos_2_theta": squred cosine with an axis.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

5.3. Reference guides 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

DiporderPlanar

class maicos.DiporderPlanar(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax: float |
None = None, bin_width: float = 1, refgroup: AtomGroup | None = None, sym:
bool = False, grouping: str = 'residues', unwrap: bool = True, bin_method: str
= 'com', output: str = 'diporder_planar.dat', concfreq: int = 0, pdim: int = 2,
order_parameter: str = 'P0', jitter: float = 0.0)

Bases: ProfilePlanarBase

Cartesian dipolar order parameters.

Calculations include the projected dipole density 𝑃0(𝑧) cos([𝑧]), the dipole orientation cos([𝑧]), the squared
dipole orientation cos ([𝑧]) and the number density (𝑧).

For the correlation analysis the central bin (𝑁∖2) of the 0th’s group profile is used. For further information on
the correlation analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

90 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

MAICoS Documentation

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• pdim ({0, 1, 2}) – direction of the projection

• order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –

Order parameter to be calculated:

– "P0": total dipole moment projected on an axis

– "cos_theta": cosine of the dipole moment with an axis

– "cos_2_theta": squred cosine with an axis.

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3. Reference guides 91

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

DiporderSphere

class maicos.DiporderSphere(atomgroup: AtomGroup, bin_width: float = 1, rmin: float = 0, rmax: float |
None = None, refgroup: AtomGroup | None = None, grouping: str = 'residues',
unwrap: bool = True, bin_method: str = 'com', output: str =
'diporder_sphere.dat', concfreq: int = 0, order_parameter: str = 'P0', jitter:
float = 0.0)

Bases: ProfileSphereBase

Spherical dipolar order parameters.

Calculations include the projected dipole density 𝑃0(𝑧) cos([𝑧]), the dipole orientation cos([𝑧]), the squared
dipole orientation cos ([𝑧]) and the number density (𝑧).

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

92 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –

Order parameter to be calculated:

– "P0": total dipole moment projected on an axis

– "cos_theta": cosine of the dipole moment with an axis

– "cos_2_theta": squred cosine with an axis.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3. Reference guides 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

DiporderStructureFactor

class maicos.DiporderStructureFactor(atomgroup: AtomGroup, bin_method: str = 'com', grouping: str =
'molecules', refgroup: AtomGroup | None = None, unwrap: bool =
True, jitter: float = 0.0, concfreq: int = 0, qmin: float = 0, qmax:
float = 6, dq: float = 0.01, output: str = 'sq.dat')

Bases: AnalysisBase

Structure factor for dipoles.

Extension the standard structure factor 𝑆(𝑞) by weighting it with different the normalized dipole moment �̂� of a
group according to

𝑆(𝑞)�̂��̂� =

⟨
1

𝑁

𝑁∑︁
𝑖,𝑗=1

�̂�𝑖�̂�𝑗 exp(−𝑖𝑞 · [𝑟𝑖 − 𝑟𝑗])

⟩

For the correlation time estimation the module will use the value of the structure factor with the smallest possible
𝑞 value.

For an detailed example on the usage refer to the how-to on dipolar correlation functions. For general details on
the theory behind the structure factor refer to Small-angle X-ray scattering.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• qmin (float) – Starting q (1/Å)

• qmax (float) – Ending q (1/Å)

94 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

• dq (float) – bin_width (1/Å)

• output (str) – Output filename.

results.q

length of binned q-vectors

Type
numpy.ndarray

results.structure_factors

Structure factor

Type
numpy.ndarray

save()→ None
Save results of analysis to file specified by output.

KineticEnergy

class maicos.KineticEnergy(atomgroup: AtomGroup, unwrap: bool = False, refgroup: AtomGroup | None =
None, jitter: float = 0.0, concfreq: int = 0, output: str = 'ke.dat', refpoint: str =
'com')

Bases: AnalysisBase

Kinetic energy timeseries.

The kinetic energy function computes the translational and rotational kinetic energy with respect to molecular
center (center of mass, center of charge) of a molecular dynamics simulation trajectory.

The analysis can be applied to study the dynamics of water molecules during an excitation pulse. For more details
read Elgabarty et al.1.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

1 Hossam Elgabarty, Tobias Kampfrath, Douwe Jan Bonthuis, Vasileios Balos, Naveen Kumar Kaliannan, Philip Loche, Roland R. Netz, Martin
Wolf, Thomas D. Kühne, and Mohsen Sajadi. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation.
Science Advances, 6(17):eaay7074, April 2020. doi:10.1126/sciadv.aay7074.

5.3. Reference guides 95

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://doi.org/10.1126/sciadv.aay7074

MAICoS Documentation

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• refpoint (str) – reference point for molecular center: center of mass ("com") or center of
charge ("coc").

• output (str) – Output filename.

results.t

time (ps).

Type
numpy.ndarray

results.trans

translational kinetic energy (kJ/mol).

Type
numpy.ndarray

results.rot

rotational kinetic energy (kJ/mol).

Type
numpy.ndarray

References

save()→ None
Save results of analysis to file specified by output.

PDFCylinder

class maicos.modules.pdfcylinder.PDFCylinder(g1: AtomGroup, g2: AtomGroup | None = None,
bin_width_pdf_z: float = 0.3, bin_width_pdf_phi: float =
0.1, drwidth: float = 0.1, dmin: float | None = None,
dmax: float | None = None, density: bool = False, origin:
ndarray | None = None, bin_method: str = 'com', unwrap:
bool = False, refgroup: AtomGroup | None = None, jitter:
float = 0.0, concfreq: int = 0, dim: int = 2, zmin: float |
None = None, zmax: float | None = None, rmin: float = 0,
rmax: float | None = None, bin_width: float = 1, output:
str = 'pdf.dat')

Bases: CylinderBase

Shell-wise one-dimensional (cylindrical) pair distribution functions.

96 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

MAICoS Documentation

The one-dimensional pair distribution functions 𝑔1d(𝜑) and 𝑔1d(𝑧) describes the pair distribution to particles
which lie on the same cylinder along the angular and axial directions respectively. These functions can be used
in cylindrical systems that are inhomogeneous along radial coordinate, and homogeneous in the angular and axial
directions. It gives the average number density of 𝑔2 as a function of angular and axial distances respectively
from a 𝑔1 atom. Then the angular pair distribution function is

𝑔1d(𝜑) =

⟨𝑁𝑔1∑︁
𝑖

𝑁𝑔2∑︁
𝑗

𝛿(𝜑− 𝜑𝑖𝑗)𝛿(𝑅𝑖𝑗)𝛿(𝑧𝑖𝑗)

⟩

And the axial pair distribution function is

𝑔1d(𝑧) =

⟨𝑁𝑔1∑︁
𝑖

𝑁𝑔2∑︁
𝑗

𝛿(𝑧 − 𝑧𝑖𝑗)𝛿(𝑅𝑖𝑗)𝛿(𝜑𝑖𝑗)

⟩

Even though due to consistency reasons the results are called pair distribution functions the output is not unitless.
The default output is is in dimension of number/volume in −3. If density is set to True, the output is normalised
by the density of 𝑔2.

Parameters

• g1 (MDAnalysis.core.groups.AtomGroup) – First AtomGroup.

• g2 (MDAnalysis.core.groups.AtomGroup) – Second AtomGroup.

• pdf_z_bin_width (float) – Binwidth of bins in the histogram of the axial PDF (Å).

• pdf_phi_bin_width (float) – Binwidth of bins in the histogram of the angular PDF (Å).

• drwidth (float) – radial width of a PDF cylindrical shell (Å), and axial or angular (arc)
slices.

• dmin (float) – the minimum pairwise distance between ‘g1’ and ‘g2’ (Å).

• dmax (float) – the maximum pairwise distance between ‘g1’ and ‘g2’ (Å).

• density (bool) – normalise the PDF by the density of ‘g2’ (−3).

• origin (numpy.ndarray) – Set origin of the cylindrical coordinate system (x,y,z). If None
the origin will be set according to the refgroup parameter.

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

5.3. Reference guides 97

https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None

MAICoS Documentation

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• output (str) – Output filename.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.phi_bins

Angular distances to which the PDF is calculated with shape (pdf_nbins) (Å)

Type
numpy.ndarray

results.z_bins

axial distances to which the PDF is calculated with shape (pdf_nbins) (Å)

Type
numpy.ndarray

results.phi_pdf

Angular PDF with shape (pdf_nbins, n_bins) (Å−3)

Type
numpy.ndarray

98 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

results.z_pdf

Axial PDF with shape (pdf_nbins, n_bins) (Å−3)

Type
numpy.ndarray

save()→ None
Save results of analysis to file specified by output.

PDFPlanar

class maicos.PDFPlanar(g1: AtomGroup, g2: AtomGroup | None = None, pdf_bin_width: float = 0.3, dzheight:
float = 0.1, dmin: float = 0.0, dmax: float | None = None, bin_method: str = 'com',
output: str = 'pdf.dat', unwrap: bool = False, refgroup: AtomGroup | None = None,
concfreq: int = 0, jitter: float = 0.0, dim: int = 2, zmin: float | None = None, zmax:
float | None = None, bin_width: float = 1)

Bases: PlanarBase

Slab-wise planar 2D pair distribution functions.

The pair distribution function 𝑔2D(𝑟) describes the spatial correlation between atoms in 𝑔1 and atoms in 𝑔2, which
lie in the same plane. It gives the average number density of 𝑔2 atoms as a function of lateral distance 𝑟 from a
centered 𝑔1 atom. PDFPlanar can be used in systems that are inhomogeneous along one axis, and homogeneous
in a plane. In fully homogeneous systems and in the limit of small ‘dzheight’ ∆𝑧, it is the same as the well known
three dimensional PDF.

The planar PDF is defined by

𝑔2D(𝑟) =

⟨
1

𝑁𝑔1
·
𝑁𝑔1∑︁
𝑖

𝑁𝑔2∑︁
𝑗

1

2𝜋𝑟
𝛿(𝑟 − 𝑟𝑖𝑗)𝛿(𝑧𝑖𝑗)

⟩
.

where the brackets ⟨·⟩ denote the ensemble average. 𝛿(𝑟 − 𝑟𝑖𝑗) counts the 𝑔2 atoms at distance 𝑟 from atom 𝑖.
𝛿(𝑧𝑖𝑗) ensures that only atoms, which lie in the same plane 𝑧𝑖 = 𝑧𝑗 , are considered for the PDF.

Discretized for computational purposes the equation reads as

𝑔2D(𝑟) =
1

𝑁𝑔1
·
𝑁𝑔1∑︁
𝑖

count 𝑔2 in ∆𝑉𝑖(𝑟)

∆𝑉𝑖(𝑟)
.

where ∆𝑉𝑖(𝑟) is a ring around atom i, with inner radius 𝑟 − Δ𝑟
2 , outer radius 𝑟 + Δ𝑟

2 and height 2∆𝑧.

As the density to normalise the PDF with is unknown, the output is in the dimension of number/volume in 1/Å^3.

Functionally, PDFPlanar bins all pairwise 𝑔1-𝑔2 distances, where the z distance is smaller than ‘dzheight’ in a
histogram.

For a more detailed explanation refer to Explanation: PDF and PDFPlanar Derivation

Parameters

• g1 (MDAnalysis.core.groups.AtomGroup) – First AtomGroup.

• g2 (MDAnalysis.core.groups.AtomGroup) – Second AtomGroup.

• pdf_bin_width (float) – Binwidth of bins in the histogram of the PDF (Å).

• dzheight (float) – dz height of a PDF slab∆𝑧 (Å).∆𝑧 is introduced to discretize the delta
function 𝛿(𝑧𝑖𝑗). It is the maximum 𝑧 distance between atoms which are considered to lie in

5.3. Reference guides 99

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

the same plane. In the limit of ∆𝑧 → 0, PDFPlanar reaches the continous limit. However,
if ∆𝑧 is too small, there are no atoms in g2 to sample. We recommend a choice of ∆𝑧 that
is 1/10th of a bond length.

• dmin (float) – Minimum pairwise distance between g1 and g2 (Å).

• dmax (float) – Maximum pairwise distance between g1 and g2 (Å).

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

100 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

Type
numpy.ndarray

results.bins

distances to which the PDF is calculated with shape (pdf_nbins) (Å)

Type
numpy.ndarray

results.pdf

PDF with shape (pdf_nbins, n_bins) (1/Å^3)

Type
np.ndrray

save()→ None
Save results of analysis to file specified by output.

RDFDiporder

class maicos.RDFDiporder(g1: AtomGroup, g2: AtomGroup | None = None, bin_width: float = 0.1, rmin: float
= 0.0, rmax: float = 15.0, bin_method: str = 'com', norm: str = 'rdf', grouping: str
= 'residues', unwrap: bool = True, refgroup: AtomGroup | None = None, jitter: float
= 0.0, concfreq: int = 0, output: str = 'diporderrdf.dat')

Bases: AnalysisBase

Spherical Radial Distribution function between dipoles.

The implementation is heavily inspired by MDAnalysis.analysis.rdf.InterRDF and is according to Zhang
and Galli1 given by

𝑔�̂�,�̂�(𝑟) =
1

𝑁

⟨∑︁
𝑖

1

𝑛𝑖(𝑟)

𝑛𝑖(𝑟)∑︁
𝑗=1

(�̂�𝑖 · �̂�𝑗)

⟩

where �̂� is the normalized dipole moment of a grouping and 𝑛𝑖(𝑟) is the number of dipoles within a spherical
shell of distance 𝑟 and 𝑟 + 𝛿𝑟 from dipole 𝑖.

For the correlation time estimation the module will use the value of the RDF with the largest possible 𝑟 value.

For an detailed example on the usage refer to the how-to on dipolar correlation functions.

Parameters

• g1 (MDAnalysis.core.groups.AtomGroup) – First AtomGroup.

• g2 (MDAnalysis.core.groups.AtomGroup) – Second AtomGroup.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.
1 Cui Zhang and Giulia Galli. Dipolar correlations in liquid water. The Journal of Chemical Physics, 141(8):084504, August 2014.

doi:10.1063/1.4893638.

5.3. Reference guides 101

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.1063/1.4893638

MAICoS Documentation

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• norm (str, {'rdf', 'density', 'none'}) – For ‘rdf’ calculate 𝑔𝑎𝑏(𝑟). For ‘density’ the
single group density 𝑛𝑎𝑏(𝑟) is computed. ‘none’ computes the number of particles oc-
curences in each spherical shell.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• output (str) – Output filename.

results.bins

radial distances to which the RDF is calculated with shape (rdf_nbins) (Å)

Type
numpy.ndarray

results.rdf

RDF either in eÅ−2 if norm is "rdf" or "density" or eÅ if norm is "none".

Type
numpy.ndarray

102 Chapter 5. Developer documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

References

save()→ None
Save results of analysis to file specified by output.

Saxs

class maicos.Saxs(atomgroup: AtomGroup, unwrap: bool = False, refgroup: AtomGroup | None = None, jitter:
float = 0.0, concfreq: int = 0, bin_spectrum: bool = True, qmin: float = 0, qmax: float = 6,
dq: float = 0.1, thetamin: float = 0, thetamax: float = 180, output: str = 'sq.dat')

Bases: AnalysisBase

Small angle X-Ray scattering intensities (SAXS).

This module computes the structure factor 𝑆(𝑞), the scattering intensity 𝐼(𝑞) and their corresponding scattering
vectors 𝑞. For a system containing only one element the structure factor and the scattering intensity are connected
via the form factor 𝑓(𝑞)

𝐼(𝑞) = [𝑓(𝑞)]2𝑆(𝑞)

For more details on the theory behind this module see Small-angle X-ray scattering.

By default the scattering vectors 𝑞 are binned according to their length 𝑞 using a bin width given by dq. Setting
the option bin_spectrum=False, also the raw scattering vectors and their corresponding Miller indices can
be saved. Saving the scattering vectors and Miller indices is only possible when the box vectors are constant in
the whole trajectory (NVT) since for changing cells the same Miller indices correspond to different scattering
vectors.

Analyzed scattering vectors 𝑞 can be restricted by a minimal and maximal angle with the z-axis. For 0 and 180,
all possible vectors are taken into account. To obtain the scattering intensities, the structure factor is normalized
by an element-specific form factor based on Cromer-Mann parameters Prince1.

For the correlation time estimation the module will use the value of the scattering intensity with the largest
possible 𝑞 value.

For an example on the usage refer to How-to: SAXS.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of

1 E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed.
edition edition, January 2004. ISBN 978-1-4020-1900-5.

5.3. Reference guides 103

https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MAICoS Documentation

mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• bin_spectrum (bool) – Bin the spectrum. If FalseMiller indices of q-vector are returned.
Only works for NVT simulations.

• qmin (float) – Starting q (1/Å)

• qmax (float) – Ending q (1/Å)

• dq (float) – bin_width (1/Å)

• thetamin (float) – Minimal angle (°) between the q vectors and the z-axis.

• thetamax (float) – Maximal angle (°) between the q vectors and the z-axis.

• output (str) – Output filename.

results.scattering_vectors

Length of the binned scattering vectors.

Type
numpy.ndarray

results.miller_indices

Miller indices of q-vector (only available if bin_spectrum==False).

Type
numpy.ndarray

results.struture_factors

structure factors 𝑆(𝑞)

Type
numpy.ndarray

results.scattering_intensities

scattering intensities 𝐼(𝑞)

Type
numpy.ndarray

104 Chapter 5. Developer documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

References

save()→ None
Save results of analysis to file specified by output.

TemperaturePlanar

class maicos.TemperaturePlanar(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax:
float | None = None, bin_width: float = 1, refgroup: AtomGroup | None =
None, sym: bool = False, grouping: str = 'atoms', unwrap: bool = True,
bin_method: str = 'com', output: str = 'temperature.dat', concfreq: int = 0,
jitter: float = 0.0)

Bases: ProfilePlanarBase

Temperature profiles in a cartesian geometry.

Currently only atomistic temperature profiles are supported. Therefore grouping per molecule, segment, residue,
or fragment is not possible.

For the correlation analysis the central bin (𝑁∖2) of the 0th’s group profile is used. For further information on
the correlation analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

5.3. Reference guides 105

https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

MAICoS Documentation

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

VelocityCylinder

class maicos.VelocityCylinder(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax: float
| None = None, bin_width: int = 1, rmin: float = 0, rmax: float | None =
None, refgroup: AtomGroup | None = None, grouping: str = 'atoms', unwrap:
bool = True, bin_method: str = 'com', output: str = 'velocity.dat', concfreq:
int = 0, jitter: float = 0.0, vdim: int = 0, flux: bool = False)

Bases: ProfileCylinderBase

Cartesian velocity profile across a cylinder.

Reads in coordinates and velocities from a trajectory and calculates a velocity [/ps] or a flux per unit area
[−2 ps−1] profile along a given axis.

106 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

MAICoS Documentation

The grouping keyword gives you fine control over the velocity profile, e.g. you can choose atomar or molecular
velocities. Note that if the first one is employed for complex compounds, usually a contribution corresponding
to the vorticity appears in the profile.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

5.3. Reference guides 107

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename. vdim : {0, 1, 2} Dimension for velocity binning (x=0,
y=1, z=1).

• flux (bool) – Calculate the flux ([2/ps]) instead of the velocity.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

VelocityPlanar

class maicos.VelocityPlanar(atomgroup: AtomGroup, dim: int = 2, zmin: float | None = None, zmax: float |
None = None, bin_width: int = 1, refgroup: AtomGroup | None = None, sym:
bool = False, grouping: str = 'atoms', unwrap: bool = True, bin_method: str =
'com', output: str = 'velocity.dat', concfreq: int = 0, vdim: int = 0, flux: bool =
False, jitter: float = 0.0)

Bases: ProfilePlanarBase

Velocity profiles in a cartesian geometry.

Reads in coordinates and velocities from a trajectory and calculates a velocity [/ps] or a flux per unit area
[−2 ps−1] profile along a given axis.

The grouping keyword gives you fine control over the velocity profile, e.g. you can choose atomar or molecular
velocities. Note that if the first one is employed for complex compounds, usually a contribution corresponding
to the vorticity appears in the profile.

For the correlation analysis the central bin (𝑁∖2) of the 0th’s group profile is used. For further information on
the correlation analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

108 Chapter 5. Developer documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MAICoS Documentation

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename. vdim : {0, 1, 2} Dimension for velocity binning (x=0,
y=1, z=1).

• $FLUX_PARAMETER} –

5.3. Reference guides 109

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

MAICoS Documentation

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3.2 API Documentation

Core classes

These Modules build the core of other MAICoS modules.

Base classes

AnalysisBase

class maicos.core.AnalysisBase(atomgroup: AtomGroup, unwrap: bool, refgroup: None | AtomGroup, jitter:
float, concfreq: int, wrap_compound: str)

Bases: _Runner, AnalysisBase

Base class derived from MDAnalysis for defining multi-frame analysis.

The class is designed as a template for creating multi-frame analyses. This class will automatically take care
of setting up the trajectory reader for iterating, and it offers to show a progress meter. Computed results
are stored inside the results attribute. To define a new analysis, AnalysisBase needs to be subclassed and
_single_frame() must be defined. It is also possible to define _prepare() and _conclude() for pre- and
post-processing. All results should be stored as attributes of the MDAnalysis.analysis.base.Results con-
tainer.

During the analysis, the correlation time of an observable can be estimated to ensure that calculated errors are
reasonable. For this, the _single_frame()method has to return a single float. For details on the computation
of the correlation and its further analysis refer to maicos.lib.util.correlation_analysis().

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

110 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

MAICoS Documentation

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• wrap_compound (str) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues", "segments", "molecules", or
"fragments".

atomgroup

A AtomGroup for which the calculations are performed.

Type
MDAnalysis.core.groups.AtomGroup

_universe

The Universe the AtomGroup belong to

Type
MDAnalysis.core.universe.Universe

_trajectory

The trajectory the AtomGroup belong to

Type
MDAnalysis.coordinates.base.ReaderBase

times

array of Timestep times. Only exists after calling AnalysisBase.run()

Type
numpy.ndarray

frames

array of Timestep frame indices. Only exists after calling AnalysisBase.run()

Type
numpy.ndarray

_frame_index

index of the frame currently analysed

5.3. Reference guides 111

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Type
int

_index

Number of frames already analysed (same as _frame_index + 1)

Type
int

results

results of calculation are stored after call to AnalysisBase.run()

Type
MDAnalysis.analysis.base.Results

_obs

Observables of the current frame

Type
MDAnalysis.analysis.base.Results

_obs.box_center

Center of the simulation cell of the current frame

Type
numpy.ndarray

sums

Sum of the observables across frames. Keys are the same as _obs.

Type
MDAnalysis.analysis.base.Results

means

Means of the observables. Keys are the same as _obs.

Type
MDAnalysis.analysis.base.Results

sems

Standard errors of the mean of the observables. Keys are the same as _obs

Type
MDAnalysis.analysis.base.Results

corrtime

The correlation time of the analysed data. For details on how this is calculated see maicos.lib.util.
correlation_analysis().

Type
float

Raises
ValueError – If any of the provided AtomGroups (atomgroup or refgroup) does not contain any
atoms.

112 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.Results
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

MAICoS Documentation

Example

To write your own analysis module you can use the example given below. As with all MAICoS modules, this
inherits from the maicos.core.base.AnalysisBase class.

The example will calculate the average box volume and stores the result within the result object of the class.

>>> import logging
>>> from typing import Optional

>>> import MDAnalysis as mda
>>> import numpy as np

>>> from maicos.core import AnalysisBase
>>> from maicos.lib.util import render_docs

Creating a logger makes debugging easier.

>>> logger = logging.getLogger(__name__)

In the following the analysis module itself. Due to the similar structure of all MAICoS modules you can render
the parameters using the maicos.lib.util.render_docs() decorator. The decorator will replace special
keywords with a leading $ with the actual docstring as defined in maicos.lib.util.DOC_DICT.

>>> @render_docs
... class NewAnalysis(AnalysisBase):
... '''Analysis class calcuting the average box volume.'''
...
... def __init__(
... self,
... atomgroup: mda.AtomGroup,
... concfreq: int = 0,
... temperature: float = 300,
... output: str = "outfile.dat",
...):
... super().__init__(
... atomgroup=atomgroup,
... refgroup=None,
... unwrap=False,
... jitter=0.0,
... wrap_compound="atoms",
... concfreq=concfreq,
...)
...
... self.temperature = temperature
... self.output = output
...
... def _prepare(self):
... '''Set things up before the analysis loop begins.'''
... # self.atomgroup refers to the provided `atomgroup`
... # self._universe refers to full universe of given `atomgroup`
... self.volume = 0
...
... def _single_frame(self):

(continues on next page)

5.3. Reference guides 113

MAICoS Documentation

(continued from previous page)

... '''Calculate data from a single frame of trajectory.

...

... Don't worry about normalising, just deal with a single frame.

... '''

... # Current frame index: self._frame_index

... # Current timestep object: self._ts

...

... volume = self._ts.volume

... self.volume += volume

...

... # Eeach module should return a characteristic scalar which is used

... # by MAICoS to estimate correlations of an Analysis.

... return volume

...

... def _conclude(self):

... '''Finalise the results you've gathered.

...

... Called at the end of the run() method to finish everything up.

... '''

... self.results.volume = self.volume / self.n_frames

... logger.info(

... "Average volume of the simulation box "

... f"{self.results.volume:.2f} Å3"

...)

...

... def save(self) -> None:

... '''Save results of analysis to file specified by ``output``.

...

... Called at the end of the run() method after _conclude.

... '''

... self.savetxt(

... self.output, np.array([self.results.volume]), columns="volume / Å3"

...)

...

Afterwards the new analysis can be run like this

>>> import MDAnalysis as mda
>>> from MDAnalysisTests.datafiles import TPR, XTC

>>> u = mda.Universe(TPR, XTC)

>>> na = NewAnalysis(u.atoms)
>>> _ = na.run(start=0, stop=10)
>>> round(na.results.volume, 2)
362631.65

Results can also be accessed by key

>>> round(na.results["volume"], 2)
362631.65

property box_center: ndarray

114 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Center of the simulation cell.

run(start: int | None = None, stop: int | None = None, step: int | None = None, frames: int | None = None,
verbose: bool | None = None, progressbar_kwargs: dict | None = None)→ Self
Iterate over the trajectory.

savetxt(fname: str, X: ndarray, columns: List[str] | None = None)→ None
Save to text.

An extension of the numpy savetxt function. Adds the command line input to the header and checks for a
doubled defined filesuffix.

Return a header for the text file to save the data to. This method builds a generic header that can be used
by any MAICoS module. It is called by the save method of each module.

The information it collects is:

• timestamp of the analysis

• name of the module

• version of MAICoS that was used

• command line arguments that were used to run the module

• module call including the default arguments

• number of frames that were analyzed

• atomgroup that was analyzed

• output messages from modules and base classes (if they exist)

AnalysisCollection

class maicos.core.AnalysisCollection(*analysis_instances: AnalysisBase)
Bases: _Runner

Running a collection of analysis classes on the same single trajectory.

Warning: AnalysisCollection is still experimental. You should not use it for anything important.

An analyses with AnalysisCollection can lead to a speedup compared to running the individual analyses,
since the trajectory loop is performed only once. The class requires that each analysis is a child of AnalysisBase.
Additionally, the trajectory of all analysis_instancesmust be the same. It is ensured that all analysis instances
use the same original timestep and not an altered one from a previous analysis instance.

Parameters
*analysis_instances (AnalysisBase) – Arbitrary number of analysis instances to be run on
the same trajectory.

Raises

• AttributeError – If the provided analysis_instances do not work on the same trajec-
tory.

• AttributeError – If an analysis_instances is not a child of AnalysisBase.

5.3. Reference guides 115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError

MAICoS Documentation

Example

>>> import MDAnalysis as mda
>>> from maicos import DensityPlanar
>>> from maicos.core import AnalysisCollection
>>> from MDAnalysisTests.datafiles import TPR, XTC
>>> u = mda.Universe(TPR, XTC)

Select atoms

>>> ag_O = u.select_atoms("name O")
>>> ag_H = u.select_atoms("name H")

Create the individual analysis instances

>>> dplan_O = DensityPlanar(ag_O)
>>> dplan_H = DensityPlanar(ag_H)

Create a collection for common trajectory

>>> collection = AnalysisCollection(dplan_O, dplan_H)

Run the collected analysis

>>> _ = collection.run(start=0, stop=100, step=10)

Results are stored in the individual instances see AnalysisBase on how to access them. You can also save all
results of the analysis within one call:

>>> collection.save()

run(start: int | None = None, stop: int | None = None, step: int | None = None, frames: int | None = None,
verbose: bool | None = None, progressbar_kwargs: dict | None = None)→ Self
Iterate over the trajectory.

Parameters

• start (int) – start frame of analysis

• stop (int) – stop frame of analysis

• step (int) – number of frames to skip between each analysed frame

• frames (array_like) – array of integers or booleans to slice trajectory; frames can only
be used instead of start, stop, and step. Setting both frames and at least one of start,
stop, step to a non-default value will raise a ValueError.

• verbose (bool) – Turn on verbosity

• progressbar_kwargs (dict) – ProgressBar keywords with custom parameters regarding
progress bar position, etc; see MDAnalysis.lib.log.ProgressBar for full list.

Returns
self – analysis object

Return type
object

116 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.mdanalysis.org/stable/documentation_pages/lib/log.html#MDAnalysis.lib.log.ProgressBar
https://docs.python.org/3/library/functions.html#object

MAICoS Documentation

save()→ None
Save results of all analysis_instances to disk.

The methods calls the save() method of all analysis_instances if available. If an instance has no
save() method a warning for this instance is issued.

ProfileBase

class maicos.core.ProfileBase(atomgroup: AtomGroup, grouping: str, bin_method: str, output: str,
weighting_function: Callable, weighting_function_kwargs: None | Dict,
normalization: str)

Bases: object

Base class for computing profiles.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• weighting_function (callable) – The function calculating the array weights for the his-
togram analysis. It must take an AtomGroup as first argument and a grouping ("atoms",
"residues", "segments", "molecules", "fragments") as second. Additional pa-
rameters can be given as weighting_function_kwargs. The function must return a
numpy.ndarray with the same length as the number of group members.

• weighting_function_kwargs (dict) – Additional keyword arguments for
weighting_function

• normalization ({"none", "number", "volume"}) – The normalization of the profile per-
formed in every frame. If None, no normalization is performed. If number, the histogram
is divided by the number of occurences in each bin. If volume, the profile is divided by the
volume of each bin.

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3. Reference guides 117

https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

save()→ None
Save results of analysis to file specified by output.

Planar classes

PlanarBase

class maicos.core.PlanarBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup | None, jitter:
float, concfreq: int, dim: int, zmin: None | float, zmax: None | float, bin_width:
float, wrap_compound: str)

Bases: AnalysisBase

Analysis class providing options and attributes for a planar system.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

118 Chapter 5. Developer documentation

https://docs.python.org/3/library/constants.html#None
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• wrap_compound (str) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues", "segments", "molecules", or
"fragments".

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

zmin

Minimal coordinate for evaluation (Å) with in the lab frame, where 0 corresponds to the origin of the cell.

Type
float

zmax

Maximal coordinate for evaluation (Å) with in the lab frame, where 0 corresponds to the origin of the cell.

Type
float

_obs.L

Average length (in Å) along the chosen dimension in the current frame.

Type
float

_obs.bin_pos

Central bin positions (in Å) of each bin (in Å) in the current frame.

Type
numpy.ndarray, (n_bins)

_obs.bin_width

Bin width (in Å) in the current frame

Type
float

_obs.bin_edges

Edges of the bins (in Å) in the current frame.

Type
numpy.ndarray, (n_bins + 1)

_obs.bin_area

Area of the rectangle of each bin in the current frame. Calculated via 𝐿𝑥 · 𝐿𝑦/𝑁bins where 𝐿𝑥 and 𝐿𝑦 are
the box lengths perpendicular to the dimension of evaluations given by dim. 𝑁bins is the number of bins.

Type
numpy.ndarray, (n_bins)

results.bin_volume

Volume of an cuboid of each bin (in Å^3) in the current frame.

5.3. Reference guides 119

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Type
numpy.ndarray, (n_bins)

property odims: ndarray

Other dimensions perpendicular to dim i.e. (0,2) if dim = 1.

ProfilePlanarBase

class maicos.core.ProfilePlanarBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup | None,
jitter: float, concfreq: int, dim: int, zmin: None | float, zmax: None |
float, bin_width: float, sym: bool, grouping: str, bin_method: str,
output: str, weighting_function: Callable,
weighting_function_kwargs: None | Dict, normalization: str)

Bases: PlanarBase, ProfileBase

Base class for computing profiles in a cartesian geometry.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

120 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

• sym (bool) – Symmetrize the profile. Only works in combination with refgroup.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• weighting_function (callable) – The function calculating the array weights for the his-
togram analysis. It must take an AtomGroup as first argument and a grouping ("atoms",
"residues", "segments", "molecules", "fragments") as second. Additional pa-
rameters can be given as weighting_function_kwargs. The function must return a
numpy.ndarray with the same length as the number of group members.

• weighting_function_kwargs (dict) – Additional keyword arguments for
weighting_function

• normalization ({"none", "number", "volume"}) – The normalization of the profile per-
formed in every frame. If None, no normalization is performed. If number, the histogram
is divided by the number of occurences in each bin. If volume, the profile is divided by the
volume of each bin.

results.bin_pos

Bin positions (in Å) ranging from zmin to zmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3. Reference guides 121

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Cylinder classes

CylinderBase

class maicos.core.CylinderBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup | None, jitter:
float, concfreq: int, dim: int, zmin: None | float, zmax: None | float,
bin_width: float, rmin: float, rmax: None | float, wrap_compound: str)

Bases: PlanarBase

Analysis class providing options and attributes for a cylinder system.

Provide the results attribute r.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

• bin_width (float) – Width of the bins (in Å).

122 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• wrap_compound (str) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues", "segments", "molecules", or
"fragments".

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

pos_cyl

positions in cylinder coordinats (r, phi, z)

Type
numpy.ndarray

_obs.R

Average length (in Å) along the radial dimension in the current frame.

Type
float

_obs.bin_pos

Central bin position of each bin (in Å) in the current frame.

Type
numpy.ndarray, (n_bins)

_obs.bin_width

Bin width (in Å) in the current frame

Type
float

_obs.bin_edges

Edges of the bins (in Å) in the current frame.

Type
numpy.ndarray, (n_bins + 1)

_obs.bin_area

Area of the annulus pf the each bin in the current frame. Calculated via 𝜋
(︀
𝑟2𝑖+1 − 𝑟2𝑖

)︀
where i is the index

of the bin.

Type
numpy.ndarray, (n_bins)

_obs.bin_volume

Volume of an hollow cylinder of each bin (in Å^3) in the current frame. Calculated via 𝜋𝐿
(︀
𝑟2𝑖+1 − 𝑟2𝑖

)︀
where i is the index of the bin.

Type
numpy.ndarray, (n_bins)

5.3. Reference guides 123

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

ProfileCylinderBase

class maicos.core.ProfileCylinderBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup |
None, jitter: float, concfreq: int, dim: int, zmin: None | float, zmax:
None | float, bin_width: float, rmin: float, rmax: None | float,
grouping: str, bin_method: str, output: str, weighting_function:
Callable, weighting_function_kwargs: None | Dict, normalization:
str)

Bases: CylinderBase, ProfileBase

Base class for computing radial profiles in a cylindrical geometry.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• zmin (float) – Minimal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmin=None, all coordinates down to the lower cell boundary are taken into account.

• zmax (float) – Maximal coordinate for evaluation (in Å) with respect to the center of mass
of the refgroup.

If zmax = None, all coordinates up to the upper cell boundary are taken into account.

124 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

• bin_width (float) – Width of the bins (in Å).

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• weighting_function (callable) – The function calculating the array weights for the his-
togram analysis. It must take an AtomGroup as first argument and a grouping ("atoms",
"residues", "segments", "molecules", "fragments") as second. Additional pa-
rameters can be given as weighting_function_kwargs. The function must return a
numpy.ndarray with the same length as the number of group members.

• weighting_function_kwargs (dict) – Additional keyword arguments for
weighting_function

• normalization ({"none", "number", "volume"}) – The normalization of the profile per-
formed in every frame. If None, no normalization is performed. If number, the histogram
is divided by the number of occurences in each bin. If volume, the profile is divided by the
volume of each bin.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

5.3. Reference guides 125

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Sphere classes

SphereBase

class maicos.core.SphereBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup | None, jitter:
float, concfreq: int, rmin: float, rmax: None | float, bin_width: float,
wrap_compound: str)

Bases: AnalysisBase

Analysis class providing options and attributes for a spherical system.

Provide the results attribute r.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• bin_width (float) – Width of the bins (in Å).

126 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

• wrap_compound (str) – The group which will be kept together through the wrap processes.
Allowed values are: "atoms", "group", "residues", "segments", "molecules", or
"fragments".

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

pos_sph

positions in spherical coordinats (r, phi, theta)

Type
numpy.ndarray

_obs.R

Average length (in Å) along the radial dimension in the current frame.

Type
float

_obs.bin_pos

Central bin position of each bin (in Å) in the current frame.

Type
numpy.ndarray, (n_bins)

_obs.bin_width

Bin width (in Å) in the current frame

Type
float

_obs.bin_edges

Edges of the bins (in Å) in the current frame.

Type
numpy.ndarray, (n_bins + 1)

_obs.bin_area

Surface area (in Å^2) of the sphere of each bin with radius bin_pos in the current frame. Calculated via
4𝜋𝑟2𝑖 where 𝑖 is the index of the bin.

Type
numpy.ndarray, (n_bins)

results.bin_volume

volume of a spherical shell of each bins (in Å^3) of the current frame. Calculated via 4𝜋/3
(︀
𝑟3𝑖+1 − 𝑟3𝑖

)︀
where i is the index of the bin.

Type
numpy.ndarray, (n_bins)

5.3. Reference guides 127

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

ProfileSphereBase

class maicos.core.ProfileSphereBase(atomgroup: AtomGroup, unwrap: bool, refgroup: AtomGroup | None,
jitter: float, concfreq: int, rmin: float, rmax: None | float, bin_width:
float, grouping: str, bin_method: str, output: str, weighting_function:
Callable, weighting_function_kwargs: Dict | None, normalization:
str)

Bases: SphereBase, ProfileBase

Base class for computing radial profiles in a spherical geometry.

For the correlation analysis the 0th bin of the 0th’s group profile is used. For further information on the correlation
analysis please refer to maicos.core.base.AnalysisBase or the General design section.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• unwrap (bool) – When True, molecules that are broken due to the periodic boundary con-
ditions are made whole.

If the input contains molecules that are already whole, speed up the calculation by disabling
unwrap. To do so, use the flag -no-unwrap when using MAICoS from the command line,
or use unwrap=False when using MAICoS from the Python interpreter.

Note: Molecules containing virtual sites (e.g. TIP4P water models) are not currently sup-
ported in MDAnalysis. In this case, you need to provide unwrapped trajectory files directly,
and disable unwrap. Trajectories can be unwrapped, for example, using the trjconv com-
mand of GROMACS.

• refgroup (MDAnalysis.core.groups.AtomGroup) – Reference AtomGroup used for the
calculation. If refgroup is provided, the calculation is performed relative to the center of
mass of the AtomGroup. If refgroup is None the calculations are performed with respect
to the center of the (changing) box.

• jitter (float) – Magnitude of the random noise to add to the atomic positions.

A jitter can be used to stabilize the aliasing effects sometimes appearing when histogramming
data. The jitter value should be about the precision of the trajectory. In that case, using jitter
will not alter the results of the histogram. If jitter = 0.0 (default), the original atomic
positions are kept unchanged.

You can estimate the precision of the positions in your trajectory with maicos.lib.util.
trajectory_precision(). Note that if the precision is not the same for all frames, the
smallest precision should be used.

• concfreq (int) – When concfreq (for conclude frequency) is larger than 0, the conclude
function is called and the output files are written every concfreq frames.

• rmin (float) – Minimal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

• rmax (float) – Maximal radial coordinate relative to the center of mass of the refgroup for
evaluation (in Å).

If rmax=None, the box extension is taken.

• bin_width (float) – Width of the bins (in Å).

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

128 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• output (str) – Output filename.

• weighting_function (callable) – The function calculating the array weights for the his-
togram analysis. It must take an AtomGroup as first argument and a grouping ("atoms",
"residues", "segments", "molecules", "fragments") as second. Additional pa-
rameters can be given as weighting_function_kwargs. The function must return a
numpy.ndarray with the same length as the number of group members.

• weighting_function_kwargs (dict) – Additional keyword arguments for
weighting_function

• normalization ({"none", "number", "volume"}) – The normalization of the profile per-
formed in every frame. If None, no normalization is performed. If number, the histogram
is divided by the number of occurences in each bin. If volume, the profile is divided by the
volume of each bin.

results.bin_pos

Bin positions (in Å) ranging from rmin to rmax.

Type
numpy.ndarray

results.profile

Calculated profile.

Type
numpy.ndarray

results.dprofile

Estimated profile’s uncertainity.

Type
numpy.ndarray

Library functions

Library modules of MAICoS.

This library contains additional modules, like general and mathematical helper functions, which are used in the other
MAICoS modules.

5.3. Reference guides 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Mathematical helper functions

Helper functions for mathematical and physical operations.

maicos.lib.math.FT(t: ndarray, x: ndarray, indvar: bool = True)→ ndarray | Tuple[ndarray, ndarray]
Discrete Fourier transformation using fast Fourier transformation (FFT).

Parameters

• t (numpy.ndarray) – Time values of the time series.

• x (numpy.ndarray) – Function values corresponding to the time series.

• indvar (bool) – If True, returns the FFT and frequency values. If False, returns only the
FFT.

Returns

If indvar is True, returns a tuple (k, xf2) where:

• k (numpy.ndarray): Frequency values corresponding to the FFT.

• xf2 (numpy.ndarray): FFT of the input function, scaled by the time range and phase
shifted.

If indvar is False, returns the FFT (xf2) directly as a numpy.ndarray.

Return type
tuple(numpy.ndarray, numpy.ndarray) or numpy.ndarray

Raises
RuntimeError – If the time series is not equally spaced.

Example

>>> t = np.linspace(0, np.pi, 4)
>>> x = np.sin(t)
>>> k, xf2 = FT(t, x)
>>> k
array([-3. , -1.5, 0. , 1.5])
>>> np.round(xf2, 2)
array([0. +0.j , -0.68+0.68j, 1.36+0.j , -0.68-0.68j])

See also:

iFT()
For the inverse fourier transform.

maicos.lib.math.center_cluster(ag: AtomGroup, weights: ndarray)→ ndarray
Calculate the center of the atomgroup with respect to some weights.

Parameters

• ag (MDAnalysis.core.groups.AtomGroup) – Group of atoms to calculate the center for.

• weights (numpy.ndarray) – Weights in the shape of ag.

Returns
com – The center with respect to the weights.

130 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

Return type
numpy.ndarray

Without proper treatment of periodic boundrary conditions (PBC) most algorithms will result in wrong center
calculations. As shown below without treating PBC the center of mass is located in the center of the box

+-----------+
| |
| 1 x 2 |
| |
+-----------+

However, the distance accross the box boundary is shorter and therefore the center with PBC should be located
somwhere else. The correct way to calculate the center is described in Bai and Breen1 where coordinates of the
particles are projected on a circle and weighted by their mass in this two dimensional space. The center of mass
is obtained by transforming this point back to the corresponding point in the real system. This is done seperately
for each dimension.

Reasons for doing this include the analysis of clusters in periodic boundrary conditions and consistent center of
mass calculation across box boundraries. This procedure results in the right center of mass as seen below

+-----------+
| |
x 1 2 |
| |
+-----------+

maicos.lib.math.compute_form_factor(q: float, atom_type: str)→ float
Calculate the form factor 𝑓(𝑞).

𝑓(𝑞) is expressed in terms of the scattering vector as

𝑓(𝑞) =

4∑︁
𝑖=1

𝑎𝑖𝑒
−𝑏𝑖𝑞

2/(4𝜋)2 + 𝑐 .

The coefficients 𝑎1,...,4, 𝑏1,...,4 and 𝑐 are also known as Cromer-Mann X-ray scattering factors and are documented
in Prince2.

For determining the elements maicos.lib.tables.atomtypes is used and the Cromer-Mann X-ray scattering
factors are stored in maicos.lib.tables.CM_parameters.

Parameters

• q (float) – The magnitude of the scattering vector in reciprocal angstroms (1/Å).

• atom_type (str) – The type of the atom for which the form factor is calculated.

Returns
The calculated form factor for the specified atom type and q.

Return type
float

1 Linge Bai and David Breen. Calculating Center of Mass in an Unbounded 2D Environment. Journal of Graphics Tools, 13(4):53–60, January
2008. doi:10.1080/2151237X.2008.10129266.

2 E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed.
edition edition, January 2004. ISBN 978-1-4020-1900-5.

5.3. Reference guides 131

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.1080/2151237X.2008.10129266

MAICoS Documentation

maicos.lib.math.compute_rdf_structure_factor(rdf: ndarray, r: ndarray, density: float)→ Tuple[ndarray,
ndarray]

Computes the structure factor based on the radial distribution function (RDF).

The structure factor 𝑆(𝑞) based on the RDF 𝑔(𝑟) is given by

𝑆(𝑞) = 1 + 4𝜋𝜌

∫︁ ∞

0

d𝑟𝑟
sin(𝑞𝑟)

𝑞
(𝑔(𝑟)− 1)

where 𝑞 is the magnitude of the scattering vector. The calculation is performed via a discrete sine transform as
implemented in scipy.fftpack.dst().

For an example take a look at Small-angle X-ray scattering.

Parameters

• rdf (numpy.ndarray) – radial distribution function

• r (numpy.ndarray) – equally spaced distance array on which rdf is defined

• density (float) – number density of particles

Returns

• q (numpy.ndarray) – array of q points

• struct_factor (numpy.ndarray) – structure factor

maicos.lib.math.correlation(a: ndarray, b: ndarray | None = None, subtract_mean: bool = False)→
ndarray

Calculate correlation or autocorrelation.

Uses fast fourier transforms to give the correlation function of two arrays, or, if only one array is given, the
autocorrelation. Setting subtract_mean=True causes the mean to be subtracted from the input data.

Parameters

• a (numpy.ndarray) – The first input array to calculate the correlation

• b (numpy.ndarray) – The second input array. If None, autocorrelation of a is calculated.

• subtract_mean (bool) – If True, subtract the mean from the input data.

Returns
The correlation or autocorrelation function.

Return type
numpy.ndarray

maicos.lib.math.correlation_time(timeseries: ndarray, method: str = 'sokal', mintime: int = 3, sokal_factor:
float = 8)→ float

Compute the integrated correlation time of a time series.

The integrated correlation time (in units of the sampling interval) is given by

𝜏 =

𝑁cut∑︁
𝑡=1

𝐶(𝑡)

(︂
1− 𝑡

𝑁

)︂
where 𝑁cut < 𝑁 is a subset of the time series of length 𝑁 and 𝐶(𝑡) is the discrete-time autocorrelation function.
To obtain the upper limit of the sum 𝑁cut two different methods are provided:

1. For “chodera”3 𝑁cut is given by the time when 𝐶(𝑡) crosses zero the first time.
3 John D. Chodera, William C. Swope, Jed W. Pitera, Chaok Seok, and Ken A. Dill. Use of the Weighted Histogram Analysis Method for the

Analysis of Simulated and Parallel Tempering Simulations. J. Chem. Theory Comput., 2007. doi:10.1021/ct0502864.

132 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.1021/ct0502864

MAICoS Documentation

2. For “sokal”4 𝑁cut is determined iteratively by stepwise increasing until

𝑁cut ≥ 𝑐 · 𝜏

where 𝑐 is the constant sokal_factor. If the condition is never fulfilled, -1 is returned, indicating that
the time series does not provide sufficient statistics to estimate a correlation time.

While both methods give the same correlation time for a smooth time series that decays to 0, “sokal” will results
in a more reasonable result for actual time series that are noisy and cross zero several times.

Parameters

• timeseries (numpy.ndarray) – The time series used to calculate the correlation time
from.

• method ({"sokal", "chodera"}) – Method to choose summation cutoff 𝑁cut.

• mintime (int) – Minimum possible value for 𝑁cut.

• sokal_factor (float) – Cut-off factor 𝑐 for the Sokal method.

Returns
tau – Integrated correlation time 𝜏 . If -1 (only for method="sokal") the provided time series
does not provide sufficient statistics to estimate a correlation time.

Return type
float

Raises

• ValueError – If mintime is larger than the length of the timeseries.

• ValueError – If method is not one of “sokal” or “chodera”.

References

maicos.lib.math.iFT(k: ndarray, xf: ndarray, indvar: bool = True)→ ndarray | Tuple[ndarray, ndarray]
Inverse Fourier transformation using fast Fourier transformation (FFT).

Takes the frequency series and the function as arguments. By default, returns the iFT and the time series. Setting
indvar=False means the function returns only the iFT.

Parameters

• k (numpy.ndarray) – The frequency series.

• xf (numpy.ndarray) – The function series in the frequency domain.

• indvar (bool) – If True, return both the iFT and the time series. If False, return only the
iFT.

Returns
If indvar is True, returns a tuple containing the time series and the iFT. If indvar is False, returns
only the iFT.

Return type
tuple(numpy.ndarray, numpy.ndarray) or numpy.ndarray

Raises
RuntimeError – If the time series is not equally spaced.

See also:
4 A.D. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms, lecture notes.

5.3. Reference guides 133

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#RuntimeError

MAICoS Documentation

FT()
For the Fourier transform.

maicos.lib.math.new_mean(old_mean: float, data: float, length: int)→ float
Compute the arithmetic mean of a series iteratively.

Compute the arithmetic mean of n samples based on an existing mean of n-1 and the n-th value.

Given the mean of a data series

�̄�𝑁 =
1

𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

we seperate the last value

�̄�𝑁 =
1

𝑁

𝑁−1∑︁
𝑛=1

𝑥𝑛 +
𝑥𝑁

𝑁

and multiply 1 = (N - 1)/(N - 1)

�̄�𝑁 =
𝑁 − 1

𝑁

1

𝑁 − 1
𝑁−1∑︁
𝑛=1

𝑥𝑛 +
𝑥𝑁

𝑁

The first term can be identified as the mean of the first N - 1 values and we arrive at

�̄�𝑁 =
𝑁 − 1

𝑁
�̄�𝑁−1 +

𝑥𝑁

𝑁

Parameters

• old_mean (float) – arithmetic mean of the first n - 1 samples.

• data (float) – n-th value of the series.

• length (int) – Length of the updated series, here called n.

Returns
new_mean – Updated mean of the series of n values.

Return type
float

Examples

The mean of a data set can easily be calculated from the data points. However this requires one to keep all data
points on hand until the end of the calculation.

>>> np.mean([1, 3, 5, 7])
4.0

Alternatively, one can update an existing mean, this requires only knowledge of the total number of samples.

>>> new_mean(np.mean([1, 3, 5]), data=7, length=4)
4.0

134 Chapter 5. Developer documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MAICoS Documentation

maicos.lib.math.new_variance(old_variance: float | ndarray, old_mean: float | ndarray, new_mean: float |
ndarray, data: float | ndarray, length: int)→ float | ndarray

Calculate the variance of a timeseries iteratively.

The variance of a timeseries 𝑥𝑛 can be calculated iteratively by using the following formula:

𝑆𝑛 = 𝑆𝑛 − 1 + (𝑛− 1) * (𝑥𝑛 − �̄�𝑛 − 1)2/(𝑛− 1)

Here, �̄�𝑛 is the mean of the timeseries up to the 𝑛-th value.

Floating point imprecision can lead to slight negative variances leading non defined standard deviations. There-
fore a negetaive variance is set to 0.

Parameters

• old_variance (float, numpy.ndarray) – The variance of the first n-1 samples.

• old_mean (float) – The mean of the first n-1 samples.

• new_mean (float, numpy.ndarray) – The mean of the full n samples.

• data (float, numpy.ndarray) – The n-th value of the series.

• length (int) – Length of the updated series, here called n.

Returns
new_variance – Updated variance of the series of n values.

Return type
float

Examples

The data set [1, 5, 5, 1] has a variance of 4.0

>>> np.var([1, 5, 5, 1])
4.0

Knowing the total number of data points, this operation can be performed iteratively.

>>> new_variance(
... old_variance=np.var([1, 5, 5]),
... old_mean=np.mean([1, 5, 5]),
... new_mean=np.mean([1, 5, 5, 1]),
... data=1,
... length=4,
...)
4.0

maicos.lib.math.scalar_prod_corr(a: ndarray, b: ndarray | None = None, subtract_mean: bool = False)→
ndarray

Give the corr. function of the scalar product of two vector timeseries.

Arguments should be given in the form a[t, i], where t is the time variable along which the correlation is calcu-
lated, and i indexes the vector components.

Parameters

• a (numpy.ndarray) – The first vector timeseries of shape (t, i).

5.3. Reference guides 135

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

• b (numpy.ndarray) – The second vector timeseries of shape (t, i). If None, correlation with
itself is calculated.

• subtract_mean (bool) – If True, subtract the mean from the timeseries before calculating
the correlation.

Returns
The correlation function of the scalar product of the vector timeseries.

Return type
numpy.ndarray

maicos.lib.math.symmetrize(m: ndarray, axis: None | int | Tuple[int] = None, inplace: bool = False)→
ndarray

Symmeterize an array.

The shape of the array is preserved, but the elements are symmetrized with respect to the given axis.

Parameters

• m (array_like) – Input array to symmetrize

• axis (int, tuple(int)) – Axis or axes along which to symmetrize over. The default,
axis=None, will symmetrize over all of the axes of the input array. If axis is negative it
counts from the last to the first axis. If axis is a tuple of ints, symmetrizing is performed
on all of the axes specified in the tuple.

• inplace (bool) – Do symmetrizations inplace. If False a new array is returned.

Returns
out – the symmetrized array

Return type
array_like

Notes

symmetrize uses np.flip() for flipping the indices.

Examples

>>> A = np.arange(10).astype(float)
>>> A
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> symmetrize(A)
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])
>>> symmetrize(A, inplace=True)
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])
>>> A
array([4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5])

It also works for arrays with more than 1 dimensions in a general dimension.

>>> A = np.arange(20).astype(float).reshape(2, 10).T
>>> A
array([[0., 10.],

[1., 11.],
(continues on next page)

136 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

MAICoS Documentation

(continued from previous page)

[2., 12.],
[3., 13.],
[4., 14.],
[5., 15.],
[6., 16.],
[7., 17.],
[8., 18.],
[9., 19.]])

>>> symmetrize(A)
array([[9.5, 9.5],

[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5],
[9.5, 9.5]])

>>> symmetrize(A, axis=0)
array([[4.5, 14.5],

[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5],
[4.5, 14.5]])

maicos.lib.math.transform_cylinder(positions: ndarray, origin: ndarray, dim: int)→ ndarray
Transform positions into cylinder coordinates.

The origin of th coordinate system is at origin, the direction of the cylinder is defined by dim.

Parameters

• positions (numpy.ndarray) – Cartesian coordinates (x,y,z)

• origin (numpy.ndarray) – Origin of the new cylindrical coordinate system (x,y,z).

• dim (int) – Direction of the cylinder axis (0=x, 1=y, 2=z).

Returns
Positions in cylinder coordinates (r, phi, z)

Return type
numpy.ndarray

maicos.lib.math.transform_sphere(positions: ndarray, origin: ndarray)→ ndarray
Transform positions into spherical coordinates.

The origin of the new coordinate system is at origin.

Parameters

• positions (numpy.ndarray) – Cartesian coordinates (x,y,z)

5.3. Reference guides 137

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

• origin (numpy.ndarray) – Origin of the new spherical coordinate system (x,y,z).

Returns
Positions in spherical coordinates (𝑟, phi, theta)

Return type
numpy.ndarray

maicos.lib._cmath.compute_structure_factor(positions, dimensions, qmin, qmax, thetamin, thetamax,
weights)

Calculates scattering vectors and corresponding structure factors.

Use via from maicos.lib.math import compute_structure_factor

The structure factors are calculated according to

𝑆(𝑞) =

[︃
𝑁∑︁

𝑘=1

𝑤𝑗(𝑞) cos(𝑞𝑟𝑗)

]︃2

+

[︃
𝑁∑︁

𝑘=1

𝑤𝑗(𝑞) sin(𝑞𝑟𝑗)

]︃2

.

where 𝑟𝑗 is the positions vector of particle 𝑘, 𝑞 is scattering vector and the 𝑤𝑗 are optional weights. The possible
scattering vectors are determined by the given cell dimensions.

Results are returned as arrays with three dimensions, where the index of each dimensions referers to the Miller
indices ℎ𝑘𝑙. Based on the Miller indices and the returned length of the scattering vector the actual scattering
vector can be obtained by

𝑞ℎ𝑘𝑙 = |𝑞| 2𝜋

𝐿ℎ𝑘𝑙

where |𝑞| are the returned lengths of the scattering vector and 𝐿ℎ𝑘𝑙 are the components of the simulation cell.

Parameters

• positions (numpy.ndarray) – position array.

• dimensions (numpy.ndarray) – dimensions of the cell.

• qmin (float) – Starting scattering vector length (1/Å).

• qmax (float) – Ending scattering vector length (1/Å).

• thetamin (float) – Minimal angle (°) between the scattering vectors and the z-axis.

• thetamax (float) – Maximal angle (°) between the scattering vectors and the z-axis.

• weights (numpy.ndarray) – Atomic quantity whose 𝑆(|𝑞|) we are computing. Provide an
array of 1 that has the same size as the postions, h.e np.ones(len(positions)), for the
standard structure factor.

Returns
The length of the scattering vectors and the corresponding structure factors.

Return type
tuple(numpy.ndarray, numpy.ndarray)

138 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

General helper functions

Small helper and utilities functions that don’t fit anywhere else.

maicos.lib.util.DOC_DICT

Dictionary containing the keys and the actual docstring used by maicos.lib.util.render_docs().

maicos.lib.util.DOI_LIST

References associated with MAICoS

class maicos.lib.util.Unit_vector(*args, **kwargs)
Bases: Protocol

Protocol class for unit vector methods type hints.

maicos.lib.util.atomgroup_header(AtomGroup: AtomGroup)→ str
Return a string containing infos about the AtomGroup.

Infos include the total number of atoms, the including residues and the number of residues. Useful for writing
output file headers.

Parameters
AtomGroup (MDAnalysis.core.groups.AtomGroup) – The AtomGroup object containing the
atoms.

Returns
A string containing the AtomGroup information.

Return type
str

maicos.lib.util.bin(a: ndarray, bins: ndarray)→ ndarray
Average array values in bins for easier plotting.

Parameters

• a (numpy.ndarray) – The input array to be averaged.

• bins (numpy.ndarray) – The array containing the indices where each bin begins.

Returns
The averaged array values.

Return type
numpy.ndarray

Notes

The “bins” array should contain the INDEX (integer) where each bin begins.

maicos.lib.util.charge_neutral(filter: str)→ Callable
Raise a Warning when AtomGroup is not charge neutral.

Class Decorator to raise an Error/Warning when AtomGroup in an AnalysisBase class is not charge neutral. The
behaviour of the warning can be controlled with the filter attribute. If the AtomGroup’s corresponding universe
is non-neutral an ValueError is raised.

5.3. Reference guides 139

https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable

MAICoS Documentation

Parameters
filter (str) – Filter type to control warning filter. Common values are: “error” or “default”
See warnings.simplefilter for more options.

maicos.lib.util.citation_reminder(*dois: str)→ str
Prints citations in order to remind users to give due credit.

Parameters
dois (list) – dois associated with the method which calls this. Possible dois are registered in
maicos.lib.util.DOI_LIST.

Returns
cite – formatted citation reminders

Return type
str

maicos.lib.util.correlation_analysis(timeseries: ndarray)→ float
Timeseries correlation analysis.

Analyses a timeseries for correlation and prints a warning if the correlation time is larger than the step size.

Parameters
timeseries (numpy.ndarray) – Array of (possibly) correlated data.

Returns
corrtime – Estimated correlation time of timeseries.

Return type
float

maicos.lib.util.get_center(atomgroup: AtomGroup, bin_method: str, compound: str)→ ndarray
Center attribute for an MDAnalysis.core.groups.AtomGroup.

This function acts as a wrapper for the MDAnalysis.core.groups.AtomGroup.center() method, providing
a more user-friendly interface by automatically determining the appropriate weights based on the chosen binning
method.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• compound ({"group", "segments", "residues", "molecules", "fragments"}) – The
compound to be used in the center calculation. For example, "residue", "segment", etc.

Returns
The coordinates of the calculated center.

Return type
np.ndarray

Raises
ValueError – If the provided bin_method is not one of {"com", "cog", "coc"}.

maicos.lib.util.get_cli_input()→ str
Return a proper formatted string of the command line input.

140 Chapter 5. Developer documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.center
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

MAICoS Documentation

Returns
A string representing the command line input in a proper format.

Return type
str

maicos.lib.util.get_compound(atomgroup: AtomGroup)→ str
Returns the highest order topology attribute.

The order is “molecules”, “fragments”, “residues”. If the topology contains none of those attributes, an Attribu-
teError is raised.

Parameters
atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the calcula-
tions are performed.

Returns
Name of the topology attribute.

Return type
str

Raises
AttributeError – atomgroup is missing any connection information”

maicos.lib.util.maicos_banner(version: str = '', frame_char: str = '-')→ str
Prints ASCII banner resembling the MAICoS Logo with 80 chars width.

Parameters

• version (str) – Version string to add to the banner.

• frame_char (str) – Character used to as framing around the banner.

Returns
banner – formatted banner

Return type
str

maicos.lib.util.render_docs(func: Callable)→ Callable
Replace all template phrases in the functions docstring.

Keys for the replacement are taken from in maicos.lib.util.DOC_DICT.

Parameters
func (callable) – The callable (function, class) where the phrase old should be replaced.

Returns
callable with replaced phrase

Return type
Callable

maicos.lib.util.trajectory_precision(trajectory: ReaderBase, dim: int = 2)→ ndarray
Detect the precision of a trajectory.

Parameters

• trajectory (MDAnalysis.coordinates.base.ReaderBase) – Trajectory from which
the precision is detected.

• dim ({2, 0, 1}) – Dimension along which the precision is detected.

5.3. Reference guides 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ReaderBase

MAICoS Documentation

Returns

precision – Precision of each frame of the trajectory.

If the trajectory has a high precision, its resolution will not be detected, and a value of 1e-4 is
returned.

Return type
numpy.ndarray

maicos.lib.util.unit_vectors_cylinder(atomgroup: AtomGroup, grouping: str, bin_method: str, dim: int,
pdim: str)→ ndarray

Calculate cylindrical unit vectors in cartesian coordinates.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

• dim ({0, 1, 2}) – Dimension for binning (x=0, y=1, z=1).

• pdim ({"r", "z"}) – direction of the projection

Returns
Array of the calculated unit vectors with shape (3,) for pdim=’z’ and shape (3,n) for pdim=’r’.
The length of n depends on the grouping.

Return type
numpy.ndarray

maicos.lib.util.unit_vectors_planar(atomgroup: AtomGroup, grouping: str, pdim: int)→ ndarray
Calculate unit vectors in planar geometry.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• pdim ({0, 1, 2}) – direction of the projection

Returns
the unit vector

Return type
numpy.ndarray

142 Chapter 5. Developer documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

maicos.lib.util.unit_vectors_sphere(atomgroup: AtomGroup, grouping: str, bin_method: str)→ ndarray
Calculate spherical unit vectors in cartesian coordinates.

Parameters

• ATOMGROUP_PARAMETER –

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• bin_method ({"com", "cog", "coc"}) – Method for the position binning.

The possible options are center of mass ("com"), center of geometry ("cog"), and center of
charge ("coc").

Returns
Array of the calculated unit vectors with shape (3,n). The length of n depends on the grouping.

Return type
numpy.ndarray

maicos.lib.util.unwrap_refgroup(original_class)
Class decorator error if unwrap = False and refgroup != None.

Weighting functions

Weight functions used for spatial binned analysis modules.

maicos.lib.weights.density_weights(atomgroup: AtomGroup, grouping: str, dens: str)→ ndarray
Weights for density calculations.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• dens ({"mass", "number", "charge"}) – density type to be calculated.

Returns
1D array of calculated weights. The length depends on the grouping.

Return type
numpy.ndarray

Raises
ValueError – if grouping or dens parameter is not supported.

maicos.lib.weights.diporder_pair_weights(g1: AtomGroup, g2: AtomGroup, compound: str)→ ndarray
Normalized dipole moments as weights for general diporder RDF calculations.

5.3. Reference guides 143

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

maicos.lib.weights.diporder_weights(atomgroup: AtomGroup, grouping: str, order_parameter: str,
get_unit_vectors: Unit_vector)→ ndarray

Weights for general diporder calculations.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

• order_parameter ({"P0", "cos_theta", "cos_2_theta"}) –

Order parameter to be calculated:

– "P0": total dipole moment projected on an axis

– "cos_theta": cosine of the dipole moment with an axis

– "cos_2_theta": squred cosine with an axis.

• get_unit_vectors (Callable) – Callable that returns unit vectors on which the projection
is performed. Returned unit_vectors can either be of shape (3,) or of shape (n, 3). For a shape
of (3,) the same unit vector is used for all calculations.

maicos.lib.weights.temperature_weights(atomgroup: AtomGroup, grouping: str)→ ndarray
Weights for temperature calculations.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments").

Returns
1D array of calculated weights. The length depends on the grouping.

Return type
numpy.ndarray

Raises
NotImplementedError – Currently only works for grouping=’atoms’

maicos.lib.weights.velocity_weights(atomgroup: AtomGroup, grouping: str, vdim: int)→ ndarray
Weights for velocity calculations.

The function normalises by the number of compounds.

Parameters

• atomgroup (MDAnalysis.core.groups.AtomGroup) – A AtomGroup for which the cal-
culations are performed.

144 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/stable/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MAICoS Documentation

• grouping ({"atoms", "residues", "segments", "molecules", "fragments"}) –
Atom grouping for the calculations.

The possible grouping options are the atom positions (in the case where
grouping="atoms") or the center of mass of the specified grouping unit (in the case
where grouping="residues", "segments", "molecules" or "fragments"). vdim :
{0, 1, 2} Dimension for velocity binning (x=0, y=1, z=1).

Returns
1D array of calculated weights. The length depends on the grouping.

Return type
numpy.ndarray

Tables

The module contains static lookup tables for atom typing etc.

The tables are dictionaries that are indexed by elements.

maicos.lib.tables.CM_parameters = {'Al': <maicos.lib.tables.CM_parameter object>, 'Ar':
<maicos.lib.tables.CM_parameter object>, 'B': <maicos.lib.tables.CM_parameter object>,
'Be': <maicos.lib.tables.CM_parameter object>, 'Br': <maicos.lib.tables.CM_parameter
object>, 'C': <maicos.lib.tables.CM_parameter object>, 'Ca':
<maicos.lib.tables.CM_parameter object>, 'Cl': <maicos.lib.tables.CM_parameter object>,
'F': <maicos.lib.tables.CM_parameter object>, 'H': <maicos.lib.tables.CM_parameter
object>, 'He': <maicos.lib.tables.CM_parameter object>, 'I':
<maicos.lib.tables.CM_parameter object>, 'K': <maicos.lib.tables.CM_parameter object>,
'Kr': <maicos.lib.tables.CM_parameter object>, 'Li': <maicos.lib.tables.CM_parameter
object>, 'Mg': <maicos.lib.tables.CM_parameter object>, 'N':
<maicos.lib.tables.CM_parameter object>, 'Na': <maicos.lib.tables.CM_parameter object>,
'Ne': <maicos.lib.tables.CM_parameter object>, 'O': <maicos.lib.tables.CM_parameter
object>, 'P': <maicos.lib.tables.CM_parameter object>, 'Rb':
<maicos.lib.tables.CM_parameter object>, 'S': <maicos.lib.tables.CM_parameter object>,
'Se': <maicos.lib.tables.CM_parameter object>, 'Si': <maicos.lib.tables.CM_parameter
object>, 'Xe': <maicos.lib.tables.CM_parameter object>}

Cromer-Mann X-ray scattering factors computed from numerical Hartree-Fock wave functions. See Acta Cryst.
A 24 (1968) p. 321

5.3. Reference guides 145

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MAICoS Documentation

maicos.lib.tables.atomtypes = {'AR': 'Ar', 'BR': 'Br', 'Br': 'Br', 'C': 'C', 'C*': 'C',
'C0': 'Ca', 'CA': 'C', 'CA2+': 'Ca', 'CB': 'C', 'CC': 'C', 'CCHL': 'C', 'CG2R51': 'C',
'CG2R53': 'C', 'CG2R61': 'C', 'CG311': 'C', 'CG321': 'C', 'CG324': 'C', 'CG331':
'C', 'CG334': 'C', 'CG3C51': 'C', 'CG3C52': 'C', 'CG3RC1': 'C', 'CH0': 'C', 'CH1':
'CH1', 'CH2': 'CH2', 'CH2r': 'CH2', 'CH3': 'CH3', 'CH4': 'CH4', 'CK': 'C', 'CL':
'Cl', 'CL-': 'Cl', 'CLA': 'C', 'CM': 'C', 'CMET': 'CH3', 'CN': 'C', 'CQ': 'C', 'CR':
'C', 'CR1': 'CH1', 'CT': 'C', 'CU': 'Cu', 'CU1+': 'Cu', 'CU2+': 'Cu', 'CV': 'C', 'CW':
'C', 'Cl': 'Cl', 'Cs': 'CS', 'DUM': 'DUM', 'F': 'Fe', 'FE': 'Fe', 'H': 'H', 'H1': 'H',
'H2': 'H', 'H3': 'H', 'H4': 'H', 'H5': 'H', 'HA': 'H', 'HC': 'H', 'HGA1': 'H',
'HGA2': 'H', 'HGA3': 'H', 'HGP1': 'H', 'HGR52': 'H', 'HGR53': 'H', 'HGR61': 'H',
'HO': 'H', 'HP': 'H', 'HS': 'H', 'HT': 'H', 'HW': 'H', 'HW_spc': 'H', 'HW_tip4p': 'H',
'HW_tip4pew': 'H', 'HW_tip5p': 'H', 'I': 'I', 'IB': 'Na', 'K': 'K', 'Li': 'Li',
'MCH3': 'DUM', 'MG': 'Mg', 'MG2+': 'Mg', 'MNH3': 'DUM', 'MW': 'DUM', 'N': 'N', 'N*':
'N', 'N2': 'N', 'N3': 'N', 'NA': 'N', 'NA+': 'Na', 'NB': 'N', 'NC': 'N', 'NE': 'NH',
'NG2R52': 'N', 'NL': 'NH3', 'NR': 'N', 'NT': 'NH2', 'NZ': 'NH2', 'Na': 'Na', 'O': 'O',
'O2': 'O', 'OA': 'O', 'OE': 'O', 'OG311': 'O', 'OH': 'O', 'OM': 'O', 'OMET': 'O', 'OS':
'O', 'OT': 'O', 'OW': 'O', 'OW_spc': 'O', 'OW_tip4p': 'O', 'OW_tip4p2005': 'O',
'OW_tip4pew': 'O', 'OW_tip5p': 'O', 'P': 'P', 'Rb': 'Rb', 'S': 'S', 'SH': 'Si', 'VW':
'DUM', 'ZN2+': 'Zn', 'Zn': 'Zn'}

Translation of MDAnalysis.AtomGroup.types to chemical elements.

5.4 Explanations

This section provides the theory behind some of the most complex analysis modules and explains the general design of
MAICoS. Its purpose is to provide more clarity and understanding of what MAICoS is all about.

5.4.1 General design

Foundation

MAICoS analysis modules are built on top of stacked Core classes as shown in the UML chart above. For spatial
dependent analysis, these are split into the geometries:

• Planar classes,

• Cylinder classes,

• and Sphere classes.

Each sub class inherits attributes and provides geometry-specific methods and attributes. The flow chart is shown in
the figure above. The foundation for all these classes is maicos.core.base.AnalysisBase, inherited and extended
from MDAnalysis.analysis.base.AnalysisBase. maicos.core.base.AnalysisBase takes case of the general
aspects of each analysis, which will be discussed in detail below:

1. Atom Selection - MAICoS builds on top of the MDAnalysis Universe and atom selection system, therefore
all analysis modules work only on subsets of the whole simulation. This allows investigating different species
components individually, for example splitting the contributions of solvent and solute to a single observable.
Moreover, many MAICoS analysis modules are able to process several atom selections from one simulation
within one analysis run by providing a list of atom selections. This reduces I/O loads and operations and gains
a speed up for the analysis.

1. Translational coordinate transformations and unit cell wrapping - MAICoS works with a reference structure
denoted by refgroup which center of mass (com for short) serves as the coordinate origin for every analysis.

146 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Atomtypes
https://docs.mdanalysis.org/stable/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase
https://docs.python.org/3/library/stdtypes.html#list

MAICoS Documentation

MDAnalysis’s cell dimension and coordinates range from 0 to L where L is the dimension of the simulation box.
Therefore, MAICoS defines the origin at the center of the simulation cell.

Within each frame of the analysis, the refgroup’s com is translated to the origin and all coordinates are wrapped
into the primary unit cell. Additionally, it is possible to unwrap molecules afterwards since some analysis require
whole molecules (e.g. dielectric). With this centering, the investigation of systems that translate over time is
made possible, such as for example soft interfaces or moving molecules. However, users are not forced to give a
refgroup. If no such reference structure is given, MAICoS takes the frame specific center of the simulation cell
as the origin.

User-provided ranges for spatial analysis are always with respect to the refgroup and not in absolute box coor-
dinates. For example, a 1-dimensional planar analysis ranging from -2 (Å) to 0 considers atoms on the left half
space of the refgroup.

2. Trajectory iteration - Each module implements an initialization, a prepare, a single frame and a conclude
method. The AnalysisBase will perform an analysis that is based on these provided methods. It is possible
to provide an initial and final frame as well as a step size or to analyse individual frames.

3. Time averaging of observables - For observables that have to be time-averaged, maicos.core.base.
AnalysisBase provides a frame dictionary. Each key has to be updated within the (private) _single_frame
method and the mean and the variance of each observable will be provided within a mean and a var dictionary.
Each key name within these two dictionaries is the same as within the frame dictionary.

4. On-the-fly output - MAICoS is able to update analysis results during the analysis. This can be particularly
useful for long analysis providing a way to check the correctness of analysis parameters during the run.

5. Correlation time estimation - For the calculation of the mean and the standard deviation, MAICoS assumes
uncorrelated data to compute reasonable error estimates. Since users may not know the correlation time within
their simulation, MAICoS estimates correlation times for representative observables and warns users if their
averages are obtained from correlated data. The correlation analysis gets handled by maicos.core.base.
AnalysisBase if the single_frame method of the used class returns a value to perform the analysis on. You can
find general info about which class uses which observable for the analysis below, and more detailed information
in the Reference guides. The correlation time gets calculated using the correlation time function. The
generation of warnings for the users gets handled by the correlation analysis function.

For dielectric analysis, MAICoS uses the total dipole moment parallel to the direction of the analysis. For other
spatial-dependant analysis, the correlation time is estimated from the central bin of the refgroup; in the center
of the simulation cell. This translates to the middle bin of the profile for planar analyses and the first bin for
cylindrical or spherical profiles.

Spatial Dependent Analysis

Spatial dependent analyses are crucial for interfacial and confined systems. Based on the AnalysisBase in combina-
tion with a maicos.core.base.ProfileBase class, MAICoS provides intermediate Core classes for the three main
geometries:

• maicos.core.planar.PlanarBase,

• maicos.core.cylinder.CylinderBase,

• and maicos.core.sphere.SphereBase.

These modules take care of the coordinate transformations, of the spatial boundaries, and of the spatial resolution of
the analysis.

A design concept of MAICoS for spatial analysis is that the user always provides the spatial resolution via the bin_width
parameter rather than a number of bins. Therefore, the same analysis code is easily transferable to different simulation
sizes without additional considerations about the spatial resolution.

Based on the three geometric base classes, three corresponding high level classes are provided:

5.4. Explanations 147

MAICoS Documentation

• maicos.core.planar.ProfilePlanarBase,

• maicos.core.cylinder.ProfileCylinderBase,

• and maicos.core.sphere.ProfileSphereBase.

When developing a new analysis class based on one of theses three classes, only a single weight function has to be
provided. All current Weighting functions are documented. For instance, the atomic weight could be the masses, thus
resulting in mass density profiles as done in DensityPlanar, atomic or molecular velocities as for VelocityPlanar, or
the dipolar orientations as used by the DiporderPlanar class.

More details on each base class are given in the API Documentation. For detailed information on the physical principles
of each module consider the following sections.

5.4.2 Dielectric constant measurement

Dielectric Response of Homogeneous, Isotropic Fluids

The linear dielectric response of a material relates the displacement field𝐷 to the electric field𝐸, which in the isotropic,
homogenous case can be written as (in SI units)

D = 𝜀0𝜀E

where 𝜀0 is the vacuum permittivity, and 𝜀 is the dielectric constant of the insulating medium.

One can relate the dielectric constant of a material to the fluctuations of the dipole moment of a sub-sample even
without any perturbation by an external field. Relations of this sort have been known since the 1930s and follow
from the fluctuation-dissipation theory1. Depending on the boundary conditions, this equation takes different forms,
however, the most common boundary conditions of molecular dynamics simulations are tin-foil boundary conditions
in conjunction with an Ewald-summation type approach. In this case, we get for a bulk material

𝜀 = 1 +
⟨𝑀2⟩ − ⟨𝑀⟩2

3𝜀0𝑉 𝑘B𝑇

where 𝑀 is the dipole moment of the sample, 𝑉 is its volume, 𝑘B is the Boltzmann constant and 𝑇 is the temperature.

The dipole moment is defined by

𝑀 =
∑︁
𝑖

r𝑖𝑞𝑖

where r𝑖 is the position of the 𝑖-th particle and 𝑞𝑖 is the charge of the 𝑖-th particle. Notably, this allows the calcula-
tion of the dielectric response from equilibrium simulations without the need to explicitly define an external field in
simulations.

This analysis - valid for isotropic and homogeneous systems - is implemented in MDAnalysis.analysis.
dielectric.DielectricConstant and can directly be applied to trajectories of homogeneous systems.

1 John G. Kirkwood. The Dielectric Polarization of Polar Liquids. J. Chem. Phys., 7(10):911–919, October 1939. doi:10.1063/1.1750343.

148 Chapter 5. Developer documentation

https://docs.mdanalysis.org/stable/documentation_pages/analysis/dielectric.html#MDAnalysis.analysis.dielectric.DielectricConstant
https://docs.mdanalysis.org/stable/documentation_pages/analysis/dielectric.html#MDAnalysis.analysis.dielectric.DielectricConstant
https://doi.org/10.1063/1.1750343

MAICoS Documentation

Dielectric Response of Fluids at Interfaces and in Confinement

Electrostatic Theory

The relationship between the electric field and the dielectric response shown above is only valid for isotropic homo-
geneous systems, where the properties of the material are the same throughout. However, there is also a need for
calculating the dielectric response of anistropic inhomogeneous systems. For instance, fluids confined in a porous
material are of great importance for many technological processes, such as energy storage devices like batteries and
capacitors. In these devices, a nano-porous electrode is used to increase the surface area and improve the capacity of
the device. Another common example are catalysts, where an increased surface area is used to increase the rate of a
chemical reaction, and thus porous catalysts are often utilized.

The presence of interfaces alters the dielectric response of the fluid in two ways. First, the response is not isotropic
anymore, but depends on the orientation of the electric field. Second, the response varies with the distance from the
surface of the porous material, i.e., it becomes inhomogeneous.

In the following discussion, we will focus on pores with planar symmetry, also known as “slit pores” and imple-
mented in maicos.DielectricPlanar. However, similar concepts apply to other types of pore geometries, such
as ones with cylindrical or spherical symmetries implemented in maicos.DielectricCylinder and maicos.
DielectricSphere.

Without loss of generality, we will assume that the pore is aligned along the 𝑧-axis.

The non-local, anisotropic, linear dielectric response of a fluid can generally be written as2

𝐷(r) = 𝜀0

∫︁
𝑉

d3𝑟′𝜀(r, r′)𝐸(r′)

where 𝜀(r, r′) is the dielectric tensor, which describes how the dielectric response of the fluid at position r is affected
by the electric field 𝐸(r′) throughout the volume 𝑉 of the fluid. The convolution integral accounts for the non-local
influences of the fluid response at other locations.

In planar symmetry, we can simplify the above expression further, because the Maxwell relations give

∇×E = 0

in the absence of external magnetic fields. Because of the planar symmetry, we know that the E only varies with respect
to 𝑧. Hence, the above gives 𝜕𝑧𝐸𝑦 = 𝜕𝑧𝐸𝑥 = 0, implying that the parallel components of the electric field do not vary
with 𝑧.

Thus, we can simplify the anisotropic, non-linear equation above in the parallel case to

𝐷‖ = 𝜖0𝐸‖

∫︁
d𝑧′𝜖‖(𝑧, 𝑧

′) =: 𝜖0𝜖‖(𝑧)𝐸‖

where the marginal integration of 𝜀‖(r, r′) defines the dielectric profile 𝜀‖(𝑧). It is important to note that this derivation
starts with non-local assumptions and is exact in the case of planar geometries discussed here (similar derivations apply
also for cylindrical and spherical symmertries). Thus, 𝜀‖(𝑧) fully captures the non-locality of the confined fluid’s
response and does not require additional assumptions.

In the absence of “free charges” we can use the macroscopic Maxwell equation

∇ ·D = 0

to derive the perpendicular dielectric profile.

2 Douwe Jan Bonthuis, Stephan Gekle, and Roland R. Netz. Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for
Capacitance, Hydration Interaction and Ion Adsorption. Langmuir, 28(20):7679–7694, 2012. doi:10.1021/la2051564.

5.4. Explanations 149

https://doi.org/10.1021/la2051564

MAICoS Documentation

Warning: This requires that no free charges are used in simulations, which means that no ions can be included in
simulations. This is a common pitfall and leads to a wrong analysis.

The above equation gives us the important relation of 𝜕𝑧D𝑧 = 0, which implies that the perpendicular components of
the displacement field do not vary with 𝑧. Thus, if we start with the inverse dielectric response, defined as

𝐸(𝑧) = 𝜀−1
0

∫︁
d𝑧′𝜀−1(𝑧, 𝑧′)𝐷(𝑧′)

where 𝜀−1(𝑧, 𝑧′) is the matrix inverse of the dielectric tensor. Similar to above, we use the fact that 𝐷 does not vary
with 𝑧 and simplify

𝐸⊥ = 𝜖−1
0 𝐷⊥

∫︁
d𝑧′𝜖−1

⊥ (𝑧, 𝑧′) =: 𝜖−1
0 𝜖−1

⊥ (𝑧)𝐷⊥

where the marginal integration of 𝜀−1
⊥ (r, r′) defines the inverse dielectric profile 𝜀−1

⊥ (𝑧).

In summary, if one has no magnetic fields and no free charges, the dielectric profiles 𝜀−1
⊥ (𝑧) and 𝜀‖(𝑧) fully define

the linear, anisotropic, non-local response of a system in planar confinement.

Fluctuation-Dissipation Theorem

As was briefly discussed for the homogenous case, the dielectric response of a system can be calculated from equilib-
rium simulations without the need to explicitly define an external field in simulations, using a fluctuation dissipation
theorem. This can be derived by identifying the linear response under consideration, in this case the dielectric response
to a derivative of the expected value of an observable, in this case the polarization density. The expectation value is
calculated using statistical mechanics. One can then show3Page 149, 24 that the dielectric response formalism is given by

𝜖‖(𝑧) = 1 +
⟨𝑚‖(𝑧)𝑀‖⟩ − ⟨𝑚‖(𝑧)⟩⟨𝑀‖⟩

𝜖0𝑘B𝑇

for the parallel dielectric profile, and

𝜖−1
⊥ (𝑧) = 1− ⟨𝑚⊥(𝑧)𝑀⊥⟩ − ⟨𝑚⊥(𝑧)⟩⟨𝑀⊥⟩

𝜖0𝑘B𝑇
,

for the inverse perpendicular dielectric profile.

Note that we still need to define how to calculate 𝑚‖(𝑧) and 𝑚⊥(𝑧). For the perpendicular polarization density, we
havePage 149, 2

𝑚⊥(𝑧) = −
∫︁ 𝑧

0

d𝑧′𝜌(𝑧′).

For the parallel case, we have to derive the lateral component of the polarization density as a function of the coordinate 𝑧.
This can be done by introducing multiple virtual cuts perpendicular to any lateral axis, such as the 𝑥 or 𝑦 axisPage 149, 24.
During this step one has to take care to only cut molecules along this cutting plane, which requires careful treatment of
the periodic boundary conditions commonly employed in simulations. Identifying the (non-zero) total charge on one
side of the cut with the surface charge along the plane of the virtual cut via Gauss’ theorem we can integrate out the
dependency of the lateral axis of the cut and average over multiple such cuts. This gives a good estimate for the average
surface charge density 𝜎(𝑧) w.r.t the coordinate 𝑧. Finally, we can identify

𝑚‖(𝑧) = ∓𝜎(𝑧).

3 Harry A. Stern and Scott E. Feller. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer
simulation. The Journal of Chemical Physics, 118(7):3401–3412, February 2003. doi:10.1063/1.1537244.

4 Alexander Schlaich, Ernst W. Knapp, and Roland R. Netz. Water Dielectric Effects in Planar Confinement. Phys. Rev. Lett., 117(4):048001,
July 2016. doi:10.1103/PhysRevLett.117.048001.

150 Chapter 5. Developer documentation

https://doi.org/10.1063/1.1537244
https://doi.org/10.1103/PhysRevLett.117.048001

MAICoS Documentation

Boundary Conditions

The above equations for 𝜀‖(𝑧) and 𝜀−1
⊥ (𝑧) are derived under 2d periodicity. In simulations, this entails using periodic

boundary conditions only in the 𝑥 and 𝑦 directions. In most of the typically employed simulation codes, electrostatics
are calculated using a Ewald-summation type approach. This includes direct Ewald sums or the faster meshed Ewald
sums (such as P3M, and PME). However, in their usual formulation these codes calculate 3d-periodic systems and thus
do not meet the assumptions of the derivation shown above.

In order to use the above, one can use the 2d Ewald sum or corrections thereof, such as the correction of Yeh and
Berkovitz5 or the ELC6.

However, one can also correct for the 3d electrostatics of an uncorrected Ewald-sum in the fluctuation dissipation
formalism directly as shown in refs.3Page 150, 4

For tin-foil boundary conditions, one getsPage 150, 4

𝜖−1
⊥ (𝑧) = 1− ⟨𝑚⊥(𝑧)𝑀⊥⟩ − ⟨𝑚⊥(𝑧)⟩⟨𝑀⊥⟩

𝜖0𝑘B𝑇 + 𝐶⊥/𝑉
,

where 𝐶⊥ =
∫︀
d𝑚⊥(𝑧).

Note, that a very close formulaPage 150, 3 can also be derived for arbitrary boundary conditions at infinity, which some
simulation codes can also utilize. As most simulations nowadays are performed using tin-foil boundary conditions,
MAICoS does not provide these special cases and we do not recommend that simulations for the calculation of dielectric
profiles are performed with other boundary conditions.

Note: The above equation reduces to the correct 2d periodic system if one includes an explicit vacuum layer in the 𝑧
direction of infinite (sufficiently large) size, such that the influence between periodic images over the 𝑧 direction can
be approximated as a dipole interaction. This approach is analogous to the Yeh and Berkovitz correction5 and may be
used to calculate the dielectric profiles for physical systems with 2d-symmetry when corrections are not available. In
these situations, we recommend to use a padding vacuum layer such that the system is 3x the physical system size in 𝑧
direction.

However, there are systems which truly are 3d-periodic, such as stacks of lipid membranes. In these cases, one has
to also use the above formula which includes the dipole corrections, but only simulate the physical system, without a
padding vacuum layer.

The correction for 3d periodic systems with tin-foil boundary conditions can be turned on using the parameter is_3d.

References

5.4.3 Small-angle X-ray scattering

MD Simulations often complement conventional experiments, such as X-ray crystallography, Nuclear Magnetic Res-
onance (NMR) spectroscopy and Atomic-Force Microscopy (AFM). X-ray crystallography is a method by which the
structure of molecules can be resolved. X-rays of wavelength 0.1 to 100 Å are scattered by the electrons of atoms. The
intensities of the scattered rays are often amplified using by crystals containing a multitude of the studied molecule po-
sitionally ordered. The molecule is thereby no longer under physiological conditions. However, the study of structures
in a solvent should be done under physiological conditions (in essence, this implies a disordered, solvated fluid system);
therefore X-ray crystallography does not represent the ideal method for such systems. Small-Angle X-ray Scattering

5 In-Chul Yeh and Max L. Berkowitz. Ewald summation for systems with slab geometry. The Journal of Chemical Physics, 111(7):3155–3162,
August 1999. doi:10.1063/1.479595.

6 Axel Arnold, Jason de Joannis, and Christian Holm. Electrostatics in periodic slab geometries. I. The Journal of Chemical Physics,
117(6):2496–2502, July 2002. doi:10.1063/1.1491955.

5.4. Explanations 151

https://doi.org/10.1063/1.479595
https://doi.org/10.1063/1.1491955

MAICoS Documentation

(abbreviated to SAXS) allows for measurements of molecules in solutions. With this method the shape and size of the
molecule and also distances within it can be obtained. In general, for larger objects, the information provided by SAXS
can be converted to information about the object’s geometry via the Bragg-Equation

𝑛 · 𝜆 = 2 · 𝑑 · sin(𝜃)

with 𝑛 ∈ N, 𝜆 the wavelength of the incident wave, 𝑑 the size of the diffracting object, and 𝜃 the scattering angle. For
small angles, 𝑑 and 𝜃 are approximately inversely proportional to each other, which means larger objects scatter X-rays
at smaller angles.

Experiments

The measured quantity in SAXS experiments is the number of elastically scattered photons as a function of the scattering
angle 2𝜃, i.e. the intensity of the scattered rays across a range of small angles. The general set-up of a SAXS experiment
is shown in figure below.

The experiments are carried out by placing the sample of interest in a highly monochromatic and collimated (parallel)
X-ray beam of wavelength 𝜆. When the incident rays with wave vector 𝑘𝑖 reach the sample they scatter. The scattered
rays, with wave vector 𝑘𝑠, are recorded by a 2D-detector revealing a diffraction pattern.

Since the scattering agents in the sample are electrons, X-Ray diffraction patterns reveal the electron density. Since
the scattering is elastic, the magnitudes of the incident and scattered waves are the same: |𝑘𝑖| = |𝑘𝑠| = 2𝜋/𝜆. The
scattering vector is 𝑞 = 𝑘𝑠−𝑘𝑖 with a magnitude of 𝑞 = |𝑞| = 4𝜋 sin(𝜃)/𝜆. The structure factor can be obtained from
the intensity of the scattered wave, 𝐼𝑠(𝑞), and the correspnding form factor 𝑓(𝑞), which involves a frourier transform of
the element-specific local electron density and thus determines the amplitude of the scattered wave of a single element.

152 Chapter 5. Developer documentation

MAICoS Documentation

Simulations

In simulations, the structure factor and scattering intensities 𝑆(𝑞) can be extracted directly from the positions of the
particles. maicos.Saxs calculates these factors. The calculated scattering intensities can be directly compared to the
experimental one without any further processing. In the following we derive the essential relations. We start with the
scattering intensity which is expressed as

𝐼𝑠(𝑞) = 𝐴𝑠(𝑞) ·𝐴*
𝑠(𝑞) ,

with the amplitude of the elastically scattered wave

𝐴𝑠(𝑞) =

𝑁∑︁
𝑗=1

𝑓𝑗(𝑞) · 𝑒−𝑖𝑞𝑟𝑗 ,

where 𝑓𝑗(𝑞) is the element-specific form factor of atom 𝑗 and 𝑟𝑗 the position of the 𝑗 th atom out of 𝑁 atoms.

The scattering intensity can be evaluated for wave vectors 𝑞 = 2𝜋(𝐿𝑥𝑛𝑥, 𝐿𝑦𝑛𝑦, 𝐿𝑧𝑛𝑧), where 𝑛 ∈ N and 𝐿𝑥, 𝐿𝑦, 𝐿𝑧

are the box lengths of cubic cells.

Note: maicos.Saxs can analyze any cells by mapping coordinates back onto cubic cells.

The complex conjugate of the amplitude is

𝐴*
𝑠(𝑞) =

𝑁∑︁
𝑗=1

𝑓𝑗(𝑞) · 𝑒𝑖𝑞𝑟𝑗 .

The scattering intensity therefore can be written as

𝐼𝑠(𝑞) =

𝑁∑︁
𝑗=1

𝑓𝑗(𝑞)𝑒
−𝑖𝑞𝑟𝑗 ·

𝑁∑︁
𝑘=1

𝑓𝑘(𝑞)𝑒
𝑖𝑞𝑟𝑘 .

With Euler’s formula 𝑒𝑖𝜑 = cos(𝜑) + 𝑖 sin(𝜑) the intensity is

𝐼𝑠(𝑞) =

𝑁∑︁
𝑗=1

𝑓𝑗(𝑞) cos(𝑞𝑟𝑗)− 𝑖 sin(𝑞𝑟𝑗) ·
𝑁∑︁

𝑘=1

𝑓𝑘(𝑞) cos(𝑞𝑟𝑘) + 𝑖 sin(𝑞𝑟𝑘) .

Multiplication of the terms and simplifying yields the final expression for the intensity of a scattered wave as a function
of the wave vector and with respect to the particle’s form factor

𝐼𝑠(𝑞) =

⎡⎣ 𝑁∑︁
𝑗=1

𝑓𝑗(𝑞) cos(𝑞𝑟𝑗)

⎤⎦2

+

⎡⎣ 𝑁∑︁
𝑗=1

𝑓𝑗(𝑞) sin(𝑞𝑟𝑗)

⎤⎦2

.

For systems containing only one kind of atom the structure factor is connected to the scattering intensity via

𝐼𝑠(𝑞) = [𝑓(𝑞)]2𝑆(𝑞) .

For any system the structure factor can be written as

𝑆(𝑞) =

⟨
1

𝑁

𝑁∑︁
𝑗=1

cos(𝑞𝑟𝑗)

⟩2

+

⟨
1

𝑁

𝑁∑︁
𝑗=1

sin(𝑞𝑟𝑗)

⟩2

.

5.4. Explanations 153

MAICoS Documentation

The limiting value 𝑆(0) for 𝑞 → 0 is connected to the isothermal compressibility1 and the element-specific form factors
𝑓(𝑞) of a specific atom can be approximated with

𝑓(sin 𝜃/𝜆) =

4∑︁
𝑖=1

𝑎𝑖𝑒
−𝑏𝑖 sin

2 𝜃/𝜆2

+ 𝑐 .

Expressed in terms of the scattering vector we can write

𝑓(𝑞) =

4∑︁
𝑖=1

𝑎𝑖𝑒
−𝑏𝑖𝑞

2/(4𝜋)2 + 𝑐 .

The element-specific coefficients 𝑎1,...,4, 𝑏1,...,4 and 𝑐 are documented2.

Connection of the structure factor to the radial distribution function

If the system’s structure is determined by pairwise interactions only, the density correlations of a fluid are characterized
by the pair distribution function

𝑔(𝑟, 𝑟′) =
⟨𝜌(2)(𝑟, 𝑟′)⟩
⟨𝜌(𝑟)⟩⟨𝜌(𝑟′)⟩

,

where 𝜌(2)(𝑟, 𝑟′) =
∑︀𝑁

𝑖,𝑗=1,�̸�=𝑗 𝛿(𝑟− 𝑟𝑖)𝛿(𝑟− 𝑟𝑗) and 𝜌(𝑟) =
∑︀𝑁

𝑖=1 𝛿(𝑟− 𝑟𝑖) are the two- and one-particle density
operators.

For a homogeneous and isotropic system, 𝑔(𝑟) = 𝑔(𝑟, 𝑟′) is a function of the distance 𝑟 = |𝑟 − 𝑟′| only and is called
the radial distribution function (RDF). As explained above, scattering experiments measure the structure factor

𝑆(𝑞) =

⟨
1

𝑁

𝑁∑︁
𝑖,𝑗=1

exp(−𝑖𝑞 · [𝑟𝑖 − 𝑟𝑗])

⟩
,

which we here normalize only by the number of particles 𝑁 . For a homogeneous and isotropic system, it is a function
of 𝑞 = |𝑞| only and related to the RDF by Fourier transformation (FT)

𝑆𝐹𝑇 (𝑞) = 1 + 4𝜋𝜌

∫︁ ∞

0

d𝑟𝑟
sin(𝑞𝑟)

𝑞
(𝑔(𝑟)− 1) ,

which is another way compared for the direct evaluation from trajectories which was derived above. In general this
can be as accurate as the direct evaluation if the RDF implementation works for non-cubic cells and is not limited
to distances 𝑟max = 𝐿/2, see3 for details. However, in usual implementation the RDF can only be obtained until
𝑟max = 𝐿/2 which leads to a range of 𝑞 > 𝑞FTmin = 2𝜋/𝑟rmax = 4𝜋/𝐿. This means that the minimal wave vector
that can be resolved is a factor of 2 larger compared compared to the direct evaluation, leading to “cutoff ripples”. The
direct evaluation should therefore usually be preferred4.

To compare the RDF and the structure factor you can use maicos.lib.math.compute_rdf_structure_factor().
For a detailed example take a look at Small-angle X-ray scattering.

1 Jean-Pierre Hansen and Ian. R. McDonald. Theory of Simple Liquids. Elsevier / Academic Press, 3rd ed edition, 2006. ISBN 9780080455075.
2 E. Prince. International Tables for Crystallography,Volume C: Mathematical, Physical and Chemical Tables. Springer, Dordrecht, 3rd ed.

edition edition, January 2004. ISBN 978-1-4020-1900-5.
3 Johannes Zeman, Svyatoslav Kondrat, and Christian Holm. Ionic screening in bulk and under confinement. The Journal of Chemical Physics,

155(20):204501, November 2021. doi:10.1063/5.0069340.
4 Felix Sedlmeier, Dominik Horinek, and Roland R. Netz. Spatial Correlations of Density and Structural Fluctuations in Liquid Water: A

Comparative Simulation Study. J. Am. Chem. Soc., 133(5):1391–1398, February 2011. doi:10.1021/ja1064137.

154 Chapter 5. Developer documentation

https://doi.org/10.1063/5.0069340
https://doi.org/10.1021/ja1064137

MAICoS Documentation

References

5.4.4 Pair distribution functions

The pair distribution function describes the spatial correlation between particles.

Two-dimensional (planar) pair distribution function

Here, we present the two-dimensional pair distribution function 𝑔2d(𝑟), which restricts the distribution to particles
which lie on the same surface 𝑆𝜉.

Let 𝑔1 be the group of particles which are centered, and 𝑔2 be the group of particles whose density around a 𝑔1 particle
is calculated. Furthermore, we define a parametric surface 𝑆𝜉 as a function of 𝜉,

𝑆𝜉 = {r𝜉(𝑢, 𝑣)|𝑢min < 𝑢 < 𝑢max, 𝑣min < 𝑣 < 𝑣max}

which consists of all points r𝜉. By varying 𝑢, 𝑣 we can reach all points on one surface 𝜉. Let us additionally consider
a circle on that plane 𝑆𝑖,𝑟 with radius 𝑟 around atom 𝑖 given by

𝑆𝑖,𝑟 = {r𝑖,𝑟| ||(r𝑖,𝑟 − xi|| = 𝑟) ∧ (r𝑖,𝑟 ∈ 𝑆𝜉,𝑖)}

where 𝑆𝜉,𝑖 is the plane in which atom 𝑖 lies.

Then the two-dimensional pair distribution function is

𝑔2d(𝑟) =

⟨𝑁𝑔1∑︁
𝑖

1

𝐿(𝑟, 𝜉𝑖)

∑︀𝑁𝑔2
𝑗 𝛿(𝑟 − 𝑟𝑖𝑗)𝛿(𝜉𝑖𝑗)

||𝜕f𝑖𝜕𝑟 × 𝜕f𝑖
𝜕𝜉 ||𝜑=𝜑𝑗

⟩
where 𝐿(𝑟, 𝜉𝑖) is the contour length of the circle 𝑆𝑖,𝑟. f𝑖(𝑟, 𝛾, 𝜑) is a parametrization of the circle 𝑆𝑖,𝑟.

Discretized for computational purposes we consider a volume ∆𝑉𝜉𝑖(𝑟), which is bounded by the surfaces 𝑆𝜉𝑖−Δ𝜉,
𝑆𝜉𝑖+Δ𝜉 and 𝑆𝑟−Δ𝑟

2
, 𝑆𝑟+Δ𝑟

2
. Then our two-dimensional pair distribution function is

𝑔2d(𝑟) =

⟨
1

𝑁𝑔1

𝑁𝑔1∑︁
𝑖

count (𝑔2) in ∆𝑉𝜉𝑖(𝑟)

∆𝑉𝜉𝑖(𝑟)

⟩

Derivation

Let us introduce cylindrical coordinates 𝑟, 𝑧, 𝜑 with the origin at the position of atom 𝑖.

𝑥 = 𝑟 · cos𝜑
𝑦 = 𝑟 · sin𝜑
𝑧 = 𝑧

Then the two-dimensional pair distribution is given by

𝑔2d(𝑟, 𝑧 = 0) =

⟨𝑁𝑔1∑︁
𝑖

1

2𝜋𝑟

𝑁𝑔2∑︁
𝑗

𝛿(𝑟 − 𝑟𝑖𝑗)𝛿(𝑧𝑖𝑗)

⟩
where we have followed the general derivations given above.

For discretized calculation we count the number of atoms per ring as illustrated below

The sketch shows an atom 𝑖 from group 𝑔1 at the origin in blue. Around the atom a ring volume with average distance
𝑟 from atom i is shaded in light red. Atoms 𝑗 from group 𝑔2 are counted in this volume.

5.4. Explanations 155

MAICoS Documentation

One-dimensional (cylindrical) pair distribution functions

Here, we present the one-dimensional pair distribution functions 𝑔1d(𝜑) and 𝑔1d(𝑧), which restricts the distribution to
particles which lie on the same cylinder along the angular and axial directions respectively.

Let 𝑔2 be the group of particles whose density around a 𝑔1 particle is to be calculated and let 𝑔1, 𝑔2 lie in a cylinderical
coordinate system (𝑅, 𝑧, 𝜑).

Then the angular pair distribution function is

𝑔1d(𝜑) =

⟨𝑁𝑔1∑︁
𝑖

𝑁𝑔2∑︁
𝑗

𝛿(𝜑− 𝜑𝑖𝑗)𝛿(𝑅𝑖𝑗)𝛿(𝑧𝑖𝑗)

⟩

And the axial pair distribution function is

𝑔1d(𝑧) =

⟨𝑁𝑔1∑︁
𝑖

𝑁𝑔2∑︁
𝑗

𝛿(𝑧 − 𝑧𝑖𝑗)𝛿(𝑅𝑖𝑗)𝛿(𝜑𝑖𝑗)

⟩

Discretized for computational purposes we consider a volume ∆𝑉𝑧𝑖,𝑅𝑖
(𝜑), which is bounded by the surfaces 𝑆𝑧𝑖−Δ𝑧 ,

𝑆𝑧𝑖+Δ𝑧 , 𝑆𝑅𝑖−Δ𝑅, 𝑆𝑅𝑖+Δ𝑅 and 𝑆𝜑−Δ𝜑
2
, 𝑆𝜑+Δ𝜑

2
. Then our the angular pair distribution function is

𝑔1d(𝜑) =

⟨
1

𝑁𝑔1

𝑁𝑔1∑︁
𝑖

count (𝑔2) in ∆𝑉𝑧𝑖,𝑅𝑖
(𝜑)

∆𝑉𝑧𝑖,𝑅𝑖
(𝜑)

⟩

Similarly,

𝑔1d(𝑧) =

⟨
1

𝑁𝑔1

𝑁𝑔1∑︁
𝑖

count (𝑔2) in ∆𝑉𝜑𝑖,𝑅𝑖(𝑧)

∆𝑉𝜑𝑖,𝑅𝑖
(𝑧)

⟩

5.5 Developer documentation

5.5.1 Getting involved

Contribution via merge requests are always welcome. Source code is available from GitLab. Before submitting a merge
request, please read the developer documentation and open an issue to discuss your changes. Use only the main branch
for submitting your requests.

By contributing to MAICoS, you accept and agree to the following terms and conditions for your present and future
contributions submitted to MAICoS. Except for the license granted herein to MAICoS and recipients of software dis-
tributed by MAICoS, you reserve all right, title, and interest in and to your contributions.

5.5.2 Getting started

To help with developing start by installing the development dependencies. Our continuous integration pipeline is based
on Tox. So you need to install tox first

pip install tox
or
conda install -c conda-forge tox

Then go to the MAICoS develop project page, hit the Fork button and clone your forked branch to your machine.

156 Chapter 5. Developer documentation

https://gitlab.com/maicos-devel/maicos/
https://maicos-devel.gitlab.io/maicos/devdoc
https://tox.readthedocs.io/en/latest/
https://gitlab.com/maicos-devel/maicos

MAICoS Documentation

git clone git@gitlab.com:your-user-name/maicos.git

Now you have a local version on your machine which you can install by

cd maicos
pip install -e .

This install the package in development mode, making it importable globally and allowing you to edit the code and
directly use the updated version.

5.5.3 Useful developer scripts

The following scripts can be useful to developers:

• ./developer/clean_dist_check.sh: Clean dist files. Useful before/after tox -e build

• ./developer/clean_tempfiles.sh: Remove all generated files related to Python, including all build caches.

5.5.4 Code of Conduct

As contributors and maintainers of MAICoS, we pledge to respect all people who contribute through reporting issues,
posting feature requests, updating documentation, submitting merge requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory comments
or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the
Code of Conduct may be removed from the project team.

This code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community.

This Code of Conduct is adapted from the Contributor Covenant, version 1.1.0, available at https://contributor-covenant.
org/version/1/1/0/

Contributing your own analysis module

To write your module take a look at the comprehensive example in the documentation of maicos.core.
AnalysisBase. MAICoS also has more specific base classes for different geometries that make developing modules
much easier. You may take a look at the source code at src/maicos/modules.

After you wrote your module you can add it in a new file in src/maicos/modules. On top of that please also update
the list in src/maicos/modules/__init__.py accordingly. Also, create a new .rst file with your module name
in docs/src/references/modules similar to the already existing. To finally show the documentation for the other
modules add an entry in docs/src/references/modules/index.rst in alphabetical order.

All MAICoS modules are also listed in the README.rst and you should add your module as well.

Finally, also provide meaningful tests for your module in test/modules.

For further questions feel free to ask us on our Discord server.

5.5. Developer documentation 157

https://contributor-covenant.org
https://contributor-covenant.org/version/1/1/0/
https://contributor-covenant.org/version/1/1/0/
https://discord.gg/mnrEQWVAed

MAICoS Documentation

Testing

Whenever you add a new feature to the code you should also add a test case. Further test cases are also useful if a bug
is fixed or you consider something to be worthwhile. Follow the philosophy - the more the better!

You can run all tests by:

tox

These are exactly the same tests that will be performed online in our GitLab CI workflows.

Also, you can run individual environments if you wish to test only specific functionalities, for example

tox -e lint # code style
tox -e build # packaging
tox -e tests # testing
tox -e docs # build the documentation

You can also run only a subset of the tests with tox -e tests -- <tests/file.py>, replacing <tests/file.py>
with the path to the files you want to test, e.g. tox -e tests -- tests/test_main.py for testing only the main
functions. For more details take a look at the usage and invocation <https://docs.pytest.org/en/latest/usage.html#usage-
and-invocations> page of the pytest documentation.

You can also use tox -e format to use tox to do actual formatting instead of just testing it. Also, you may want to
setup your editor to automatically apply the black code formatter when saving your files, there are plugins to do this
with all major editors.

Contributing to the documentation

Local documentation

The documentation of MAICoS is written in reStructuredText (rst) and uses the Sphinx documentation generator. You
can build the documentation from the maicos/docs folder:

tox -e docs

Then, visualize the local documentation with your favorite internet explorer (here Mozilla Firefox is used)

firefox dist/docs/index.html

Structure

Most of the content of the documentation is written in .rst files located within docs/src/. The content in the
Reference guides section is directly generated from the documentation string of the source code located in src/maicos
thanks to Sphinx and Autodoc.

After creating a new module, add it to the documentation by modifying the toctree in the docs/src/references/
modules/index.rst file, and adding a new .rst file with the following format:

.. _ModuleName:

ModuleName
##########

(continues on next page)

158 Chapter 5. Developer documentation

https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/editor_integration.html
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

MAICoS Documentation

(continued from previous page)

.. _label_module_name:

.. autoclass:: maicos.ModuleName
:members:
:undoc-members:
:show-inheritance:

Note that all files located within docs/src/examples are generated from the Python scrips located in examples using
Sphinx-Gallery.

Version information

The version information in maicos.__version__ indicates the release of MAICoS using semantic versioning.

In brief:

Given a version number MAJOR.MINOR.PATCH, we increment the

1. MAJOR version when we make incompatible API changes,

2. MINOR version when we add functionality in a backwards-compatible manner, and

3. PATCH version when we make backwards-compatible bug fixes.

However, as long as the MAJOR number is 0 (i.e. the API has not stabilized), even MINOR increases may introduce
incompatible API changes. As soon as we have a 1.0.0 release, the public API can only be changed in a backward-
incompatible manner with an increase in MAJOR version.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format,
following PEP 440.

Note: Development versions and pre-releases have a suffix after the release number, such as 0.7.0+12.gFEED2BEEF.
If you have problems, try out a full release (e.g. 0.7.0) first.

Data

maicos.__version__ = '0.8+23.g3ff25bb'

Version information for MAICoS, following PEP 440 and semantic versioning.

Release workflow

Versioneer (optional)

1. Upgrade versioneer if a new version is available.

2. Check the upgrade notes if additional steps are required

3. Upgrade versioneer

pip3 install --upgrade versioneer

4. Remove the old versioneer.py file

5.5. Developer documentation 159

https://sphinx-gallery.github.io/stable/index.html
http://semver.org/
https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/
http://semver.org/
https://pypi.org/project/versioneer
https://github.com/python-versioneer/python-versioneer/blob/master/UPGRADING.md

MAICoS Documentation

rm versioneer.py

5. Install new versioneer.py file

python3 -m versioneer install --vendor

Revert the changes in src/maicos/__init__.py

6. Commit changes

Create release

1. Make sure changelog is up to date and add release date and commit your changes

git commit -m 'Release vX.X'

2. Tag commit with the new version

git tag -m 'Release vX.X' vX.X

3. Test locally!!!

git describe

and

pip3 install .

should result in vX.X

4. If a new major release create release branch

git branch release-X-X

otherwise update the release branch with respect to the branch

git checkout release-X-X
git rebase -i main

5. Push branch, tag

git push release-X-X
git push --tags

6. Go to the web interface, add changelog as release message

160 Chapter 5. Developer documentation

https://gitlab.com/maicos-devel/maicos/-/tags

MAICoS Documentation

After the release

• Bump version (Create new section in CHANGELOG.rst)

5.6 Contributors

Thank you to all of the developers, programmers, and researchers who contributed to the creation of MAICoS.

We also thank the Institute for Computational Physics (University of Stuttgart), group members of Roland Netz at
Freie Universität Berlin, and the Stuttgart Center for Simulation Science and the German Research Council (DFG) for
funding through the Cluster of Excellence EXC 2075 “Data-integrated Simulation Science”.

5.6.1 History

MAICoS was first developed in Roland Netz’s group at the Freie University of Berlin by Alexander Schlaich and Philip
Loche, and is now mostly developed and maintained at the Institute for Computational Physics.

5.6.2 Maintainers

• Philip Loche

• Alexander Schlaich

• Henrik Stooß

5.6.3 Developers

• Maximilian Becker

• Simon Gravelle

• Philipp Stärk

• Srihas Velpuri

5.6.4 Contributors

• Adyant Agrawal

• Shane Carlson

• Kira Fischer

• Federico Grasselli

• Julian Kappler

• Marc Sauter

• Laura Scalfi

• Julius Schulz

• Dominik Wille

• Amanuel Wolde-Kidan

5.6. Contributors 161

https://www.simtech.uni-stuttgart.de/exc/research/junior-research-groups/multiscale-materials-modeling/
https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/index.html
https://www.simtech.uni-stuttgart.de/exc/
https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/index.html
https://www.simtech.uni-stuttgart.de/exc/people/Schlaich-00004/
https://people.epfl.ch/philip.loche
https://people.epfl.ch/philip.loche
https://people.epfl.ch/philip.loche
https://www.simtech.uni-stuttgart.de/exc/people/Schlaich-00004/
https://simongravelle.github.io/

MAICoS Documentation

162 Chapter 5. Developer documentation

PYTHON MODULE INDEX

m
maicos.core, 110
maicos.lib, 129
maicos.lib._cmath, 138
maicos.lib.math, 130
maicos.lib.tables, 145
maicos.lib.util, 139
maicos.lib.weights, 143

163

MAICoS Documentation

164 Python Module Index

INDEX

Symbols
__version__ (in module maicos), 159
_frame_index (maicos.core.AnalysisBase attribute),

111
_index (maicos.core.AnalysisBase attribute), 112
_obs (maicos.core.AnalysisBase attribute), 112
_trajectory (maicos.core.AnalysisBase attribute), 111
_universe (maicos.core.AnalysisBase attribute), 111

A
AnalysisBase (class in maicos.core), 110
AnalysisCollection (class in maicos.core), 115
atomgroup (maicos.core.AnalysisBase attribute), 111
atomgroup_header() (in module maicos.lib.util), 139
atomtypes (in module maicos.lib.tables), 145

B
bin() (in module maicos.lib.util), 139
bin_area (maicos.core.CylinderBase._obs attribute),

123
bin_area (maicos.core.PlanarBase._obs attribute), 119
bin_area (maicos.core.SphereBase._obs attribute), 127
bin_edges (maicos.core.CylinderBase._obs attribute),

123
bin_edges (maicos.core.PlanarBase._obs attribute),

119
bin_edges (maicos.core.SphereBase._obs attribute),

127
bin_pos (maicos.core.CylinderBase._obs attribute), 123
bin_pos (maicos.core.CylinderBase.results attribute),

123
bin_pos (maicos.core.PlanarBase._obs attribute), 119
bin_pos (maicos.core.PlanarBase.results attribute), 119
bin_pos (maicos.core.ProfileCylinderBase.results

attribute), 125
bin_pos (maicos.core.ProfilePlanarBase.results at-

tribute), 121
bin_pos (maicos.core.ProfileSphereBase.results at-

tribute), 129
bin_pos (maicos.core.SphereBase._obs attribute), 127
bin_pos (maicos.core.SphereBase.results attribute), 127
bin_pos (maicos.DensityCylinder.results attribute), 75

bin_pos (maicos.DensityPlanar.results attribute), 77
bin_pos (maicos.DensitySphere.results attribute), 78
bin_pos (maicos.DielectricCylinder.results attribute), 80
bin_pos (maicos.DielectricPlanar.results attribute), 82
bin_pos (maicos.DielectricSphere.results attribute), 86
bin_pos (maicos.DiporderCylinder.results attribute), 89
bin_pos (maicos.DiporderPlanar.results attribute), 91
bin_pos (maicos.DiporderSphere.results attribute), 93
bin_pos (maicos.modules.pdfcylinder.PDFCylinder.results

attribute), 98
bin_pos (maicos.PDFPlanar.results attribute), 100
bin_pos (maicos.TemperaturePlanar.results attribute),

106
bin_pos (maicos.VelocityCylinder.results attribute), 108
bin_pos (maicos.VelocityPlanar.results attribute), 109
bin_volume (maicos.core.CylinderBase._obs attribute),

123
bin_volume (maicos.core.PlanarBase.results attribute),

119
bin_volume (maicos.core.SphereBase.results attribute),

127
bin_width (maicos.core.CylinderBase._obs attribute),

123
bin_width (maicos.core.PlanarBase._obs attribute),

119
bin_width (maicos.core.SphereBase._obs attribute),

127
bins (maicos.PDFPlanar.results attribute), 101
bins (maicos.RDFDiporder.results attribute), 102
box_center (maicos.core.AnalysisBase property), 114
box_center (maicos.core.AnalysisBase._obs attribute),

112

C
center_cluster() (in module maicos.lib.math), 130
charge_neutral() (in module maicos.lib.util), 139
citation_reminder() (in module maicos.lib.util), 140
CM_parameters (in module maicos.lib.tables), 145
compute_form_factor() (in module maicos.lib.math),

131
compute_rdf_structure_factor() (in module

maicos.lib.math), 131

165

MAICoS Documentation

compute_structure_factor() (in module
maicos.lib._cmath), 138

correlation() (in module maicos.lib.math), 132
correlation_analysis() (in module maicos.lib.util),

140
correlation_time() (in module maicos.lib.math), 132
corrtime (maicos.core.AnalysisBase attribute), 112
cos_theta_i (maicos.DipoleAngle.resulst attribute), 87
cos_theta_ii (maicos.DipoleAngle.resulst attribute),

87
cos_theta_ij (maicos.DipoleAngle.resulst attribute),

87
CylinderBase (class in maicos.core), 122

D
density_weights() (in module maicos.lib.weights),

143
DensityCylinder (class in maicos), 74
DensityPlanar (class in maicos), 75
DensitySphere (class in maicos), 77
deps_par (maicos.DielectricPlanar.results attribute), 82
deps_perp (maicos.DielectricPlanar.results attribute),

83
deps_r (maicos.DielectricCylinder.results attribute), 81
deps_rad (maicos.DielectricSphere.results attribute), 86
deps_z (maicos.DielectricCylinder.results attribute), 80
DielectricCylinder (class in maicos), 79
DielectricPlanar (class in maicos), 81
DielectricSpectrum (class in maicos), 83
DielectricSphere (class in maicos), 85
DipoleAngle (class in maicos), 86
diporder_pair_weights() (in module

maicos.lib.weights), 143
diporder_weights() (in module maicos.lib.weights),

143
DiporderCylinder (class in maicos), 88
DiporderPlanar (class in maicos), 90
DiporderSphere (class in maicos), 92
DiporderStructureFactor (class in maicos), 94
DOC_DICT (in module maicos.lib.util), 139
DOI_LIST (in module maicos.lib.util), 139
dprofile (maicos.core.ProfileBase.results attribute),

117
dprofile (maicos.core.ProfileCylinderBase.results at-

tribute), 125
dprofile (maicos.core.ProfilePlanarBase.results

attribute), 121
dprofile (maicos.core.ProfileSphereBase.results

attribute), 129
dprofile (maicos.DensityCylinder.results attribute), 75
dprofile (maicos.DensityPlanar.results attribute), 77
dprofile (maicos.DensitySphere.results attribute), 79
dprofile (maicos.DiporderCylinder.results attribute),

89

dprofile (maicos.DiporderPlanar.results attribute), 91
dprofile (maicos.DiporderSphere.results attribute), 93
dprofile (maicos.TemperaturePlanar.results attribute),

106
dprofile (maicos.VelocityCylinder.results attribute),

108
dprofile (maicos.VelocityPlanar.results attribute), 110

E
eps_par (maicos.DielectricPlanar.results attribute), 82
eps_par_coll (maicos.DielectricPlanar.results at-

tribute), 83
eps_par_self (maicos.DielectricPlanar.results at-

tribute), 82
eps_perp (maicos.DielectricPlanar.results attribute), 83
eps_perp_coll (maicos.DielectricPlanar.results at-

tribute), 83
eps_perp_self (maicos.DielectricPlanar.results

attribute), 83
eps_r (maicos.DielectricCylinder.results attribute), 80
eps_rad (maicos.DielectricSphere.results attribute), 86
eps_z (maicos.DielectricCylinder.results attribute), 80

F
frames (maicos.core.AnalysisBase attribute), 111
FT() (in module maicos.lib.math), 130

G
get_center() (in module maicos.lib.util), 140
get_cli_input() (in module maicos.lib.util), 140
get_compound() (in module maicos.lib.util), 141

I
iFT() (in module maicos.lib.math), 133

K
KineticEnergy (class in maicos), 95

L
L (maicos.core.PlanarBase._obs attribute), 119

M
maicos.core

module, 110
maicos.lib

module, 129
maicos.lib._cmath

module, 138
maicos.lib.math

module, 130
maicos.lib.tables

module, 145
maicos.lib.util

166 Index

MAICoS Documentation

module, 139
maicos.lib.weights

module, 143
maicos_banner() (in module maicos.lib.util), 141
means (maicos.core.AnalysisBase attribute), 112
miller_indices (maicos.Saxs.results attribute), 104
module

maicos.core, 110
maicos.lib, 129
maicos.lib._cmath, 138
maicos.lib.math, 130
maicos.lib.tables, 145
maicos.lib.util, 139
maicos.lib.weights, 143

N
new_mean() (in module maicos.lib.math), 134
new_variance() (in module maicos.lib.math), 134

O
odims (maicos.core.PlanarBase property), 120

P
pdf (maicos.PDFPlanar.results attribute), 101
PDFCylinder (class in maicos.modules.pdfcylinder), 96
PDFPlanar (class in maicos), 99
phi_bins (maicos.modules.pdfcylinder.PDFCylinder.results

attribute), 98
phi_pdf (maicos.modules.pdfcylinder.PDFCylinder.results

attribute), 98
PlanarBase (class in maicos.core), 118
pos_cyl (maicos.core.CylinderBase attribute), 123
pos_sph (maicos.core.SphereBase attribute), 127
profile (maicos.core.ProfileBase.results attribute), 117
profile (maicos.core.ProfileCylinderBase.results

attribute), 125
profile (maicos.core.ProfilePlanarBase.results at-

tribute), 121
profile (maicos.core.ProfileSphereBase.results at-

tribute), 129
profile (maicos.DensityCylinder.results attribute), 75
profile (maicos.DensityPlanar.results attribute), 77
profile (maicos.DensitySphere.results attribute), 79
profile (maicos.DiporderCylinder.results attribute), 89
profile (maicos.DiporderPlanar.results attribute), 91
profile (maicos.DiporderSphere.results attribute), 93
profile (maicos.TemperaturePlanar.results attribute),

106
profile (maicos.VelocityCylinder.results attribute), 108
profile (maicos.VelocityPlanar.results attribute), 110
ProfileBase (class in maicos.core), 117
ProfileCylinderBase (class in maicos.core), 124
ProfilePlanarBase (class in maicos.core), 120
ProfileSphereBase (class in maicos.core), 128

Python Enhancement Proposals
PEP 440, 159

Q
q (maicos.DiporderStructureFactor.results attribute), 95

R
R (maicos.core.CylinderBase._obs attribute), 123
R (maicos.core.SphereBase._obs attribute), 127
rdf (maicos.RDFDiporder.results attribute), 102
RDFDiporder (class in maicos), 101
render_docs() (in module maicos.lib.util), 141
results (maicos.core.AnalysisBase attribute), 112
results (maicos.DielectricSpectrum attribute), 84
rot (maicos.KineticEnergy.results attribute), 96
run() (maicos.core.AnalysisBase method), 115
run() (maicos.core.AnalysisCollection method), 116

S
save() (maicos.core.AnalysisCollection method), 116
save() (maicos.core.ProfileBase method), 117
save() (maicos.DielectricCylinder method), 81
save() (maicos.DielectricPlanar method), 83
save() (maicos.DielectricSpectrum method), 85
save() (maicos.DielectricSphere method), 86
save() (maicos.DipoleAngle method), 88
save() (maicos.DiporderStructureFactor method), 95
save() (maicos.KineticEnergy method), 96
save() (maicos.modules.pdfcylinder.PDFCylinder

method), 99
save() (maicos.PDFPlanar method), 101
save() (maicos.RDFDiporder method), 103
save() (maicos.Saxs method), 105
savetxt() (maicos.core.AnalysisBase method), 115
Saxs (class in maicos), 103
scalar_prod_corr() (in module maicos.lib.math), 135
scattering_intensities (maicos.Saxs.results at-

tribute), 104
scattering_vectors (maicos.Saxs.results attribute),

104
sems (maicos.core.AnalysisBase attribute), 112
SphereBase (class in maicos.core), 126
structure_factors (maicos.DiporderStructureFactor.results

attribute), 95
struture_factors (maicos.Saxs.results attribute), 104
sums (maicos.core.AnalysisBase attribute), 112
symmetrize() (in module maicos.lib.math), 136

T
t (maicos.DipoleAngle.results attribute), 87
t (maicos.KineticEnergy.results attribute), 96
temperature_weights() (in module

maicos.lib.weights), 144

Index 167

MAICoS Documentation

TemperaturePlanar (class in maicos), 105
times (maicos.core.AnalysisBase attribute), 111
trajectory_precision() (in module maicos.lib.util),

141
trans (maicos.KineticEnergy.results attribute), 96
transform_cylinder() (in module maicos.lib.math),

137
transform_sphere() (in module maicos.lib.math), 137

U
Unit_vector (class in maicos.lib.util), 139
unit_vectors_cylinder() (in module maicos.lib.util),

142
unit_vectors_planar() (in module maicos.lib.util),

142
unit_vectors_sphere() (in module maicos.lib.util),

142
unwrap_refgroup() (in module maicos.lib.util), 143

V
velocity_weights() (in module maicos.lib.weights),

144
VelocityCylinder (class in maicos), 106
VelocityPlanar (class in maicos), 108

Z
z_bins (maicos.modules.pdfcylinder.PDFCylinder.results

attribute), 98
z_pdf (maicos.modules.pdfcylinder.PDFCylinder.results

attribute), 98
zmax (maicos.core.PlanarBase attribute), 119
zmin (maicos.core.PlanarBase attribute), 119

168 Index

	Getting started
	How-to guides
	Reference guides
	Explanations
	Developer documentation
	Getting started
	What is MAICoS
	Installation
	Usage - Python interpreter
	Load Simulation Data
	Density Profiles
	Uncertainity estimates
	Improving the Results
	Access to all the Module’s Options
	Additional Options

	Velocity Profile

	Usage - command line
	Some conventions
	Changelog
	v0.9 (XXXX/XX/XX)
	v0.8 (2024/02/05)
	v0.7.2 (2023/01/09)
	v0.7.1 (2023/01/01)
	v0.7 (2022/12/27)
	v0.6.1 (2022/09/26)
	v0.6 (2022/09/01)
	v0.5.1 (2022/02/21)
	v0.5 (2022/02/17)
	v0.4.1 (2021/12/17)
	v0.4 (2021/12/13)
	v0.3 (2020/03/03)
	v0.2 (2020/04/03)
	v0.1 (2019/10/30)

	How-to guides
	Small-angle X-ray scattering
	Load Simulation Data
	Extract small angle x-ray scattering (SAXS) intensities
	Computing oxygen and hydrogen contributions
	Connection of the structure factor to the radial distribution function

	Ideal component of the chemical potential
	What is the chemical potential?
	How to calculate the ideal component of the chemical potential
	References

	Dielectric profile calculation
	Basic usage
	Boundary Conditions
	TIP4P Water and Molecules with Virtual Sites
	Preliminary Output

	Pair distribution functions
	Basic usage

	Calculating and interpreting dipolar pair correlation functions
	Static dielectric constant
	Kirkwood factor
	Connecting the Kirkwood factor to real space dipolar pair-correlation functions
	Dipole Structure factor
	References

	Reference guides
	Analysis Modules
	DensityCylinder
	DensityPlanar
	DensitySphere
	DielectricCylinder
	DielectricPlanar
	DielectricSpectrum
	DielectricSphere
	DipoleAngle
	DiporderCylinder
	DiporderPlanar
	DiporderSphere
	DiporderStructureFactor
	KineticEnergy
	PDFCylinder
	PDFPlanar
	RDFDiporder
	Saxs
	TemperaturePlanar
	VelocityCylinder
	VelocityPlanar

	API Documentation
	Core classes
	Base classes
	AnalysisBase
	AnalysisCollection
	ProfileBase

	Planar classes
	PlanarBase
	ProfilePlanarBase

	Cylinder classes
	CylinderBase
	ProfileCylinderBase

	Sphere classes
	SphereBase
	ProfileSphereBase

	Library functions
	Mathematical helper functions
	General helper functions
	Weighting functions
	Tables

	Explanations
	General design
	Foundation
	Spatial Dependent Analysis

	Dielectric constant measurement
	Dielectric Response of Homogeneous, Isotropic Fluids
	Dielectric Response of Fluids at Interfaces and in Confinement
	Electrostatic Theory
	Fluctuation-Dissipation Theorem
	Boundary Conditions
	References

	Small-angle X-ray scattering
	Experiments
	Simulations
	Connection of the structure factor to the radial distribution function
	References

	Pair distribution functions
	Two-dimensional (planar) pair distribution function
	Derivation

	One-dimensional (cylindrical) pair distribution functions

	Developer documentation
	Getting involved
	Getting started
	Useful developer scripts
	Code of Conduct
	Contributing your own analysis module
	Testing
	Contributing to the documentation
	Local documentation
	Structure

	Version information
	Data

	Release workflow
	Versioneer (optional)
	Create release
	After the release

	Contributors
	History
	Maintainers
	Developers
	Contributors

	Python Module Index
	Index

