

 [image: _images/logo_MAICOS_square.png]
MAICoS is the acronym for Molecular Analysis for Interfacial
and Confined Systems. It is an object-oriented python toolkit for
analysing the structure and dynamics of interfacial and confined
fluids from molecular simulations. Combined with MDAnalysis [https://www.mdanalysis.org],
MAICoS can be used to extract density profiles, dielectric constants,
structure factors, or transport properties from trajectories files,
including LAMMPS, GROMACS, CHARMM or NAMD data. MAICoS is open source
and is released under the GNU general public license v3.0.

Basic example

This is a simple example showing how to use MAICoS to extract the density profile
from a molecular dynamics simulation. The files conf.gro and traj.trr
correspond to a water slab in vacuum that was simulated in this case using the
GROMACS [https://www.gromacs.org/] simulation package. In a Python environment, type:

import MDAnalysis as mda
import maicos
u = mda.Universe('conf.gro', 'traj.trr')
grpH2O = u.select_atoms('type O or type H')
dplan = maicos.density_planar(grpH2O)
dplan.run()

Results can be accessed from dplan.results.

Installation

Python3 [https://www.python.org] and a C-compiler are needed to build the
underlying libraries.

Using pip

If you have root access, install the package for all users by
typing in a terminal:

pip3 install numpy
pip3 install maicos

Alternatively, if you don’t have special privileges, install
the package in your home directory by using the --user flag.

List of analysis modules

	Module Name

	Description

	density_planar

	Compute partial densities/temperature profiles in the Cartesian systems.

	density_cylinder

	Compute partial densities across a cylinder.

	epsilon_bulk

	Compute dipole moment fluctuations and static dielectric constant.

	epsilon_planar

	Calculates a planar dielectric profile.

	epsilon_cylinder

	Calculate cylindrical dielectric profiles.

	dielectric_spectrum

	Computes the linear dielectric spectrum.

	saxs

	Compute SAXS scattering intensities.

	diporder

	Calculation of dipolar order parameters.

	debyer

	Calculate scattering intensities using the debye equation. The debyer [https://github.com/wojdyr/debyer]
library needs to be downloaded and build.

	dipole_angle

	Calculate angle timeseries of dipole moments with respect to an axis.

	kinetic_energy

	Calculate the timeseries of energies.

	velocity

	Mean velocity analysis.

Installation

Python3 [https://www.python.org] and a C-compiler are needed to build the
underlying libraries.

Using pip

If you have root access, install the package for all users by
typing in a terminal:

pip3 install numpy
pip3 install maicos

Alternatively, if you don’t have special privileges, install
the package in your home directory by using the --user flag:

pip3 install --user numpy
pip3 install --user maicos

Bash autocompletion

You can include MAICoS to BASH suggestions by oppening your
.bashrc or .profile file with your favorite text editor
(here vim is used):

vim ~/.bashrc

and by adding

source $(maicos --bash_completion)

Development version

The development version of MAICoS can be compiled from source.
NumPy [https://numpy.org/] and Cython [https://cython.org/] are required:

pip3 install numpy
pip3 install cython

Then type in a terminal:

git clone git@gitlab.com:maicos-devel/maicos.git
pip3 install -e maicos/

Testing

You can run the tests from the maicos/tests/ directory. The tests
rely on the pytest [https://docs.pytest.org/en/6.2.x/] library, and use some work flows from NumPy
and MDAnalysisTests [https://pypi.org/project/MDAnalysisTests/]. In a terminal, type:

pip3 install MDAnalysisTests

Then, type:

cd maicos/tests
pytest --disable-pytest-warnings

Usage

From the command line

MAICoS can be used directly from the command line, by typing in a terminal:

maicos <module> <paramaters>

You can get the general help page,
or a package-specific page by typing, respectively:

maicos -h

maicos <package> -h

For example, to get the help page for the density_planar module, type:

maicos density_planar -h

From the Python interpreter

MAICoS can be used within the python interpreter. In a python environment,
create an analysis object by supplying an atom group from MDAnalysis
as well as some (optional) parameters, then use the run method:

import maicos

ana_obj = maicos.<module>(atomgroup, <paramaters>)
ana_obj.run()

Results are available through the objects results dictionary.

Getting involved

Contribution via pull requests are always welcome. Source code is
available from GitLab [https://gitlab.com/maicos-devel/maicos/]. Before submitting a pull request, please
open an issue to discuss your changes. Use the main feature branch
develop for submitting your requests. The master branch contains
all commits of the latest release. More information on the branching
model we used is given in this nice post blog [https://nvie.com/posts/a-successful-git-branching-model/].

Testing

You can run the tests from the maicos/tests/ directory. The tests
rely on the `pytest`_ library, and use some work flows from NumPy
and `MDAnalysisTests`_. In a terminal, type:

pip3 install MDAnalysisTests

Then, type:

cd maicos/tests
pytest --disable-pytest-warnings

Writing your own analysis module

Example code for an analysis module can be found in the example
folder. To deploy the script, follow the steps in examples/README.md [https://gitlab.com/maicos-devel/maicos/-/tree/develop/examples].

We use yapf using the NumPy formatting style for our code.
You can style your code from the command line or using an
extension for your favorite editor. The easiest use is to
install the git hook module, which will automatically format
your code before committing. To install it just run the
enable_githooks.sh from the command line. Currently,
we only format python files.

MAICoS’ unit testing relies on the pytest library and use some work flows
from numpy and MDAnalysisTests. In order to run the tests you need those
packages. To start the test process, simply type from the root of the
repository

cd test
pytest --disable-pytest-warnings

Whenever you add a new feature to the code you should also add a test case.
Furthermore test cases are also useful if a bug is fixed or anything you think
worthwhile. Follow the philosophy - the more the better!

Contributing to the documentation

The documentation of MAICoS is written in reStructuredText (rst)
and uses sphinx [https://www.sphinx-doc.org/en/master/] documentation generator. In order to modify the
documentation, first create a local version on your machine.
Go to the MAICoS develop project [https://gitlab.com/maicos-devel/maicos] page and hit the Fork
button, then clone your forked branch to your machine:

git clone git@gitlab.com:your-user-name/maicos.git

Then, build the documentation from the maicos/docs folder:

cd maicos/docs/
make html

Then, still from the maicos/docs/ folder, visualise the local documentation
with your favourite internet explorer (here Mozilla Firefox is used)

firefox build/html/index.html

Each MAICoS module contains a documentation string, or docstring. Docstrings
are processed by Sphinx and autodoc to generate the documentation. If you created
a new module with a doctring, you can add it to the documentation by modifying
the toctree in the index.rst file.

Authors list

Maintainer

	Philip Loche

Authors

	Alexander Schlaich

	Philip Loche

Contributors

	Maximilian Becker

	Shane Carlson

	Julian Kappler

	Julius Schulz

	Dominik Wille

	Amanuel Wolde-Kidan

	Philipp Stärk

	Simon Gravelle

	Henrik Jaeger

	Srihas Velpuri

Changelog

v0.4 (2021/12/13)

Philip Loche, Simon Gravelle, Philipp Staerk, Henrik Jaeger,
Srihas Velpuri, Maximilian Becker

	Restructure docs and build docs for develop and release version

	Include README files into sphinx doc

	Add tutorial for density_cylinder module

	Add planar_base decorator unifying the syntax for planar analysis modules
as denisty_planar, epsilon_planar and diporder (!48)

	Corrected time_series module and created a test for it

	Added support for Python 3.9

	Created sphinx documentation

	Raise error if end is to small (#40)

	Add sorting of atom groups into molecules, enabling import of LAMMPS data

	Corrected plot format selection in dielectric_spectrum (!66)

	Fixed box dimension not set properly (!64)

	Add docs for timeseries modulees (!72)

	Fixed diporder does not compute the right quantities (#55, !75)

	Added support of calculating the chemical potentials for multiple atomgroups.

	Changed the codes behaviour of calculating the chemical potential if
atomgroups contain multiple residues.

v0.3 (2020/03/03)

Philip Loche, Amanuel Wolde-Kidan

	Fixed errors occurring from changes in MDAnalysis

	Increased minimal requirements

	Use new ProgressBar from MDAnalysis

	Increased total_charge to account for numerical inaccuracy

v0.2 (2020/04/03)

Philip Loche

	Added custom module

	Less noisy DeprecationWarning

	Fixed wrong center of mass velocity in velocity module

	Fixed documentation in diporder for P0

	Fixed debug if error in parsing

	Added checks for charge neutrality in dielectric analysis

	Added test files for an air-water trajectory and the diporder module

	Performance tweaks and tests for sfactor

	Check for molecular information in modules

v0.1 (2019/10/30)

Philip Loche

	first release out of the lab

Density modules

Density planar

Compute partial densities/temperature profiles in the Cartesian systems.
Tutorial

To follow this tutorial, the data test files of MAICoS are needed.
From a terminal, download MAICoS at a location of your choice:

cd mypath
git clone git@gitlab.com:maicos-devel/maicos.git

In a python environment, import MDAnalysis, MAICoS, PyPlot, and NumPy:

import MDAnalysis as mda
import maicos
import matplotlib.pyplot as plt
import numpy as np

Define the path to the airwater data folder of MAICoS:

datapath = 'mypath/maicos/tests/data/airwater/'

The system consists of a 2D slab with 352 water molecules in vacuum,
where the two water/vacuum interfaces are normal to the axis \(z\):

[image: documentation_pages/images/airwater.png]
Create a universe using MDAnalysis and define a group containing
the oxygen and the hydrogen atoms of the water molecules:

u = mda.Universe(datapath+'conf.gro', datapath+'traj.trr')
grpH2O = u.select_atoms('type O or type H')

Let us call the density_planar module:

dplan = maicos.density_planar(grpH2O)
dplan.run()

Extract the coordinate and the density profile:

zcoor = dplan.results['z']
dens = dplan.results['dens_mean']

By default the binwidth is 0.1 nanometers, the units are kg/m3,
and the axis is \(z\). Plot it using

fig = plt.figure(figsize = (12,6))
plt.plot(zcoor,dens,linewidth=2)
plt.xlabel("z coordinate [nanometer]")
plt.ylabel("density H2O [kg/m3]")
plt.show()

[image: documentation_pages/images/density_planar.png]
They are several options you can play with. To know the full
list of options, have a look at the Inputs section below.
For instance, you can increase the spacial resolution
by reducing the binwidth:

dplan = maicos.density_planar(grp_oxy, binwidth = 0.05)

Inputs
:param output (str): Output filename
:param outfreq (int): Default time after which output files are refreshed (1000 ps).
:param dim (int): Dimension for binning (0=X, 1=Y, 2=Z)
:param binwidth (float): binwidth (nanometer)
:param mu (bool): Calculate the chemical potential (sets dens=’number’)
:param muout (str): Prefix for output filename for chemical potential
:param temperature (float): temperature (K) for chemical potential (Default: 300K)
:param mass (float): Mass (u) for the chemical potential. By default taken from topology.
:param zpos (float): position (nm) at which the chemical potential will be computed. By default average over box.
:param dens (str): Density: mass, number, charge, temperature. (Default: mass)
:param comgroup (str): Perform the binning relative to the center of mass of the selected group.
:param center (bool): Perform the binning relative to the center of the (changing) box.

Outputs
:param dim (int): Dimension for binning (0=X, 1=Y, 2=Z)
:param binwidth (float): binwidth (nanometer)
:param comgroup (str): Perform the binning relative to the center of mass of the selected group.With comgroup the center option is also used.
:param center (bool): Perform the binning relative to the center of the (changing) box.

	returns (dict)

	
	z: bins

	dens_mean: calculated densities

	dens_err: density error

	mu: chemical potential

	dmu: error of chemical potential

Density cylinder

Compute partial densities across a cylinder.

Inputs

	param output (str)

	Output filename

	param outfreq (int)

	Default time after which output files are refreshed (1000 ps).

	param dim (int)

	Dimension for binning (0=X, 1=Y, 2=Z)

	param center (str)

	Perform the binning relative to the center of this selection string of teh first AtomGroup.
If None center of box is used.

	param radius (float)

	Radius of the cylinder (nm). If None smallest box extension is taken.

	param binwidth (float)

	binwidth (nanometer)

	param length (float)

	Length of the cylinder (nm). If None length of box in the binning dimension is taken.

	param dens (str)

	Density: mass, number, charge, temp

Outputs

	returns (dict)

	
	z: bins

	dens_mean: calculated densities

	dens_err: density error

Tutorial

To follow this tutorial, the data test files of MAICoS are needed.
From a terminal, download MAICoS at a location of your choice:

cd mypath
git clone git@gitlab.com:maicos-devel/maicos.git

In a python environment, import MDAnalysis, MAICoS, and PyPlot:

import MDAnalysis as mda
import maicos
import matplotlib.pyplot as plt

Define the path to the cntwater data folder of MAICoS:

datapath = 'mypath/maicos/tests/data/cntwater/'

The system consists of a carbon nanotube (CNT) with axis in the
\(z\): direction, a radius of about 2 nm, a of length 2.2 nm,
and filled with 810 water molecules.

[image: documentation_pages/images/cntwater.png]
Create a universe using MDAnalysis and define two groups,
one containing the water molecules, one containing the
carbon atoms:

u = mda.Universe(datapath + 'lammps.data', datapath + 'traj.xtc')
grpH2O = u.select_atoms('type 1 or type 2')
grpCNT = u.select_atoms('type 3')

Call the density_cylinder module for the two groups:

dcylH2O = maicos.density_cylinder(grpH2O, center='all', binwidth = 0.01)
dcylH2O.run()
dcylCNT = maicos.density_cylinder(grpCNT, center='all', binwidth = 0.01)
dcylCNT.run()

With the keyword center='all', the center of mass of all the atoms
of the group is used as the center of the density profile.
If not specified, the center of the box is used.

Finally, extract the coordinates and the density profiles:

rcoor = dcylH2O.results['r']
densH2O = dcylH2O.results['dens_mean']
densCNT = dcylCNT.results['dens_mean']

Plot it using PyPlot:

fig = plt.figure(figsize = (12,6))
plt.plot(rcoor,densH2O,linewidth=2)
plt.plot(rcoor,densCNT,linewidth=2)
plt.xlabel("r coordinate [nanometer]")
plt.ylabel("density [kg/m3]")
plt.show()

[image: documentation_pages/images/density_cylinder.png]

Dielectric constant modules

Epsilon bulk

Description

Compute dipole moment fluctuations and static dielectric constant.

Inputs

	param outfreq (float)

	Number of frames after which the output is updated.

	param output (str)

	Output filename.

	param temperature (float)

	temperature (K)

	param bpbc (bool)

	do not make broken molecules whole again
(only works if molecule is smaller than shortest

box vector

Outputs

	returns (dict)

	
	
	M: Directional dependant dipole moment
	\(\langle \boldsymbol M \rangle\) in \(eÅ\).

	
	M2: Directional dependant squared dipole moment
	\(\langle \boldsymbol M^2 \rangle\) in \((eÅ)^2\)

	
	fluct: Directional dependant dipole moment fluctuation
	\(\langle \boldsymbol M^2 \rangle - \langle \boldsymbol M \rangle^2\)
in \((eÅ)^2\)

	eps: Directional dependant static dielectric constant

	eps_mean: Static dielectric constant

Epsilon planar

Description

Calculate planar dielectric profiles.
See Schlaich, et al., Phys. Rev. Lett., vol. 117 (2016) for details

Inputs
:param output_prefix (str): Prefix for output files
:param zmin (float): minimal coordinate for evaluation (nm)
:param zmax (float): maximal coordinate for evaluation (nm)
:param temperature (float): temperature (K)
:param outfreq (int): Default number of frames after which output files are refreshed.
:param b2d (bool): Use 2d slab geometry
:param vac (bool): Use vacuum boundary conditions instead of metallic (2D only!).
:param bsym (bool): symmetrize the profiles
:param bpbc (bool): Do not make broken molecules whole again (only works if

molecule is smaller than shortest box vector

Outputs
:param dim (int): Dimension for binning (0=X, 1=Y, 2=Z)
:param binwidth (float): binwidth (nanometer)
:param comgroup (str): Perform the binning relative to the center of mass of the selected group.With comgroup the center option is also used.
:param center (bool): Perform the binning relative to the center of the (changing) box.

	returns (dict)

	
	z: Bin positions

	eps_par: Parallel dielectric profile (ε_∥ - 1)

	deps_par: Error of parallel dielectric profile

	eps_par_self: Self contribution of parallel dielectric profile

	eps_par_coll: Collective contribution of parallel dielectric profile

	eps_perp: Inverse perpendicular dielectric profile (ε^{-1}_⟂ - 1)

	deps_perp: Error of inverse perpendicular dielectric profile

	eps_par_self: Self contribution of Inverse perpendicular dielectric profile

	eps_perp_coll: Collective contribution of Inverse perpendicular dielectric profile

Epsilon cylinder

Description

Calculate cylindrical dielectric profiles.

Components are calculated along the axial (z) and radial (along xy)
direction at the system’s center of mass.

Inputs

	param output_prefix (str)

	Prefix for output_prefix files

	param geometry (str)

	A structure file without water from which com is calculated.

	param radius (float)

	Radius of the cylinder (nm)

	param binwidth (float)

	Bindiwdth the binwidth (nm)

	param variable_dr (bool)

	Use a variable binwidth, where the volume is kept fixed.

	param length (float)

	Length of the cylinder (nm)

	param outfreq (int)

	Default number of frames after which output files are refreshed.

	param temperature (float)

	temperature (K)

	param single (bool)

	“1D” line of watermolecules

	param bpbc (bool)

	Do not make broken molecules whole again (only works if
molecule is smaller than shortest box vector

Outputs

	returns (dict)

	
	r: Bin positions

	eps_ax: Parallel dielectric profile (ε_∥)

	deps_ax: Error of parallel dielectric profile

	eps_rad: Inverse perpendicular dielectric profile (ε^{-1}_⟂)

	deps_rad: Error of inverse perpendicular dielectric profile

Dielectric spectrum

Description

Computes the linear dielectric spectrum.

This module, given molecular dynamics trajectory data, produces a
.txt file containing the complex dielectric function as a function of the (linear, not radial -
i.e. nu or f, rather than omega) frequency, along with the associated standard deviations.
The algorithm is based on the Fluctuation Dissipation Relation (FDR):
chi(f) = -1/(3 V k_B T epsilon_0) FT{theta(t) <P(0) dP(t)/dt>}.
By default, the polarization trajectory, time series array and the average system volume are
saved in the working directory, and the data are reloaded from these files if they are present.
Lin-log and log-log plots of the susceptibility are also produced by default.

Inputs

	param recalc (bool)

	Forces to recalculate the polarization,
regardless if it is already present.

	param temperature (float)

	Reference temperature.

	param output_prefix (str)

	Prefix for the output files.

	param segs (int)

	Sets the number of segments the trajectory is broken into.

	param df (float)

	The desired frequency spacing in THz.
This determines the minimum frequency about which there
is data. Overrides -segs option.

	param noplots (bool)

	Prevents plots from being generated.

	param plotformat (str)

	Allows the user to choose the format of generated
plots (choose from ‘pdf’, ‘png’, ‘jpg’, ‘eps’)

	param ymin (float)

	Manually sets the minimum lower bound for the log-log plot.

	param bins (int)

	Determines the number of bins used for data averaging;
(this parameter sets the upper limit).
The data are by default binned logarithmically.
This helps to reduce noise, particularly in
the high-frequency domain, and also prevents plot
files from being too large.

	param binafter (int)

	The number of low-frequency data points that are
left unbinned.

	param nobin (bool)

	Prevents the data from being binned altogether. This
can result in very large plot files and errors.

Outputs
:returns (dict): TODO

Structure modules

Saxs

Description

Diporder

Description

Debyer

Description

Timeseries modules

Dipole angle

Description

Kinetic energy

Description

Transport modules

Velocity

Description

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 maicos	

 	
 	
 maicos.modules.density.density_cylinder	

 	
 	
 maicos.modules.density.density_planar	

 	
 	
 maicos.modules.epsilon.dielectric_spectrum	

 	
 	
 maicos.modules.epsilon.epsilon_bulk	

 	
 	
 maicos.modules.epsilon.epsilon_cylinder	

 	
 	
 maicos.modules.epsilon.epsilon_planar	

Index

 M

M

 	
 	
 maicos.modules.density.density_cylinder

 	module

 	
 maicos.modules.density.density_planar

 	module

 	
 maicos.modules.epsilon.dielectric_spectrum

 	module

 	
 maicos.modules.epsilon.epsilon_bulk

 	module

 	
 maicos.modules.epsilon.epsilon_cylinder

 	module

 	
 	
 maicos.modules.epsilon.epsilon_planar

 	module

 	
 module

 	maicos.modules.density.density_cylinder

 	maicos.modules.density.density_planar

 	maicos.modules.epsilon.dielectric_spectrum

 	maicos.modules.epsilon.epsilon_bulk

 	maicos.modules.epsilon.epsilon_cylinder

 	maicos.modules.epsilon.epsilon_planar

 nav.xhtml

 Table of Contents

 		
 Basic example

_images/logo_MAICOS_square.png

_static/logo_MAICOS.png

_static/minus.png

_static/file.png

_static/plus.png

